已知點的坐標為.點為軸負半軸上的動點.以線段為邊作菱形.使其兩對角線的交點恰好在軸上. 查看更多

 

題目列表(包括答案和解析)

選修4-4:坐標系與參數(shù)方程
已知極點與坐標原點重合,極軸與x軸非負半軸重合,M是曲線C:ρ=4sinθ上任意一點,點P滿足
OP
=3
OM
,設(shè)點P的軌跡為曲線Q.
(Ⅰ)求曲線Q的方程;
(Ⅱ)設(shè)曲線Q與直線l:
x=-t
y=t+a
(t為參數(shù))相交于A,B兩點且|AB|=4,求實數(shù)a的值.

查看答案和解析>>

(2012•湖南模擬)已知中心在坐標原點焦點在x軸上的橢圓C,其長軸長等于4,離心率為
2
2

(Ⅰ)求橢圓C的標準方程;
(Ⅱ)若點E(0,1),問是否存在直線l:y=kx+m與橢圓C交于M,N兩點,且|ME|=|NE|?若存在,求出k的取值范圍,若不存在,請說明理由.

查看答案和解析>>

已知頂點是坐標原點,對稱軸是軸的拋物線經(jīng)過點A.

(Ⅰ)、求拋物線的標準方程.

(Ⅱ)、直線過定點,斜率為,當為何值時,直線與拋物線有兩個公共點?

 

 

查看答案和解析>>

(本小題滿分12分)已知頂點在坐標原點,焦點在軸正半軸的拋物線上有一點,點到拋物線焦點的距離為1.(1)求該拋物線的方程;(2)設(shè)為拋物線上的一個定點,過作拋物線的兩條互相垂直的弦,,求證:恒過定點.(3)直線與拋物線交于,兩點,在拋物線上是否存在點,使得△為以為斜邊的直角三角形.

 

查看答案和解析>>

已知,當坐標為()時,

(1)求過點P1,P2的直線方程;

(2)試用數(shù)學歸納法證明:對于都在(1)中的直線上;

(3)試求使不等式對于所有成立的最大實數(shù)的值。.

查看答案和解析>>

 

一、CABCB   BDADD   AC

二、13.  0.1;14.;15. 36;16.存在,通項公式。

三、

17.解:(1)依題意得:

得:,

所以:,即,………………………………4分

20090508

(2)設(shè),則,

    由正弦定理:,

       所以兩個正三角形的面積和,…………8分

              ……………10分

       ,,

       所以:……………………………………12分

18.解:(1);………………………4分

       (2)消費總額為1500元的概率是:………………………5分

消費總額為1400元的概率是:………6分

消費總額為1300元的概率是:

,

所以消費總額大于或等于1300元的概率是;……………………8分

(3)

,

所以的分布列為:

0

1

2

3

 

0.294

0.448

0.222

0.036

………………………………………………11分

       數(shù)學期望是:!12分

19.(1)證明:因為,所以平面,

又因為,平面,

平面平面;…………………4分

(2)因為,所以平面,

所以點到平面的距離等于點E到平面的距離,

過點E作EF垂直CD且交于點F,因為平面平面,

所以平面,

所以的長為所求,………………………………………………………6分

因為,所以為二面角的平面角,=1,

到平面的距離等于1;…………………………8分

       (3)連接,由平面,得到,

       所以是二面角的平面角,

       ,…………………………………………………11分

       又因為平面平面,二面角的大小是!12分

20.解:(1)設(shè)等差數(shù)列的公差為,依題意得:

       ,

       解得,所以,…………………3分

       所以

       ,

       所以;…………………………………………………………………6分

       (2),因為

       所以數(shù)列是遞增數(shù)列,…8分

       當且僅當時,取得最小值,則:,

       所以,即的取值范圍是。………………12分

21.解:(1)設(shè)點的坐標為,則點的坐標為,點的坐標為,

因為,所以

得到:,注意到不共線,

所以軌跡方程為;……………5分

(2)設(shè)點是軌跡C上的任意一點,則以為直徑的圓的圓心為,

假設(shè)滿足條件的直線存在,設(shè)其方程為,直線被圓截得的弦為,

 

……………………………………………………7分

弦長為定值,則,即,

此時……………………………………………………9分

所以當時,存在直線,截得的弦長為,

   當時,不存在滿足條件的直線!12分

22.解:(1)設(shè),因為 上的增函數(shù),且,所以上的增函數(shù),

所以,得到;所以的取值范圍為………4分

(2)由條件得到,

猜測最大整數(shù),……6分

現(xiàn)在證明對任意恒成立,

等價于,

設(shè)

時,,當時,,

所以對任意的都有

對任意恒成立,

所以整數(shù)的最大值為2;……………………………………………………9分

(3)由(2)得到不等式

所以,……………………11分

所以原不等式成立!14分

 

 


同步練習冊答案

    1. <fieldset id="wzqzt"><optgroup id="wzqzt"></optgroup></fieldset><tfoot id="wzqzt"><optgroup id="wzqzt"></optgroup></tfoot>