已知公差不為0的等差數(shù)列的前項和為.且滿足.又 依次成等比數(shù)列.數(shù)列滿足.其中為大于0的常數(shù). 查看更多

 

題目列表(包括答案和解析)

(2012•黃州區(qū)模擬)已知公差不為0的等差數(shù)列{an}的前3項和S3=9,且a1,a2,a5成等比數(shù)列.
(1)求數(shù)列{an}的通項公式和前n項和Sn
(2)設(shè)Tn為數(shù)列{
1anan+1
}的前n項和,若Tn≤λan+1對一切n∈N*恒成立,求實數(shù)λ的最小值.

查看答案和解析>>

已知公差不為0的等差數(shù)列{an}的首項a1=a(a∈R),設(shè)數(shù)列{an}的前n項和為Sn,且a1、a2、a4恰為等比數(shù)列{bn}的前三項.
(1)求數(shù)列{an}的通項公式及Sn;
(2)當n≥2時,比較An=
1
S1
+
1
S2
+…+
1
Sn
Bn=
1
b1
+
1
b2
+…+
1
bn
的大。ǹ墒褂媒Y(jié)論:n≥2時,2n>n+1)

查看答案和解析>>

已知公差不為0的等差數(shù)列{an}的首項a1(a1∈R),且
1
a1
1
a2
,
1
a4
成等比數(shù)列.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)對n∈N*,試比較
1
a2
+
1
a22
+
1
a23
+…+
1
a2n
1
a1
的大。

查看答案和解析>>

已知公差不為0的等差數(shù)列{an}滿足a1,a3,a4成等比關(guān)系,Sn為{an}的前n項和,則
S3-S2
S5-S3
的值為( 。
A、2
B、3
C、
1
5
D、不存在

查看答案和解析>>

已知公差不為0的等差數(shù)列{an}的首項a1=a,a∈N*,設(shè)數(shù)列的前n項和為Sn,且
1
a1
,
1
a2
1
a4
成等比數(shù)列.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設(shè)An=
1
S1
+
1
S2
+
1
S3
+…+
1
Sn
,若A2011=
2011
2012
,求a的值.

查看答案和解析>>

 

一、CABCB   BDADD   AC

二、13.  0.1;14.;15. 36;16.存在,通項公式

三、

17.解:(1)依題意得:

得:,

所以:,即,………………………………4分

        20090508

        (2)設(shè),則

            由正弦定理:,

               所以兩個正三角形的面積和,…………8分

                      ……………10分

               ,,

               所以:……………………………………12分

        18.解:(1);………………………4分

               (2)消費總額為1500元的概率是:………………………5分

        消費總額為1400元的概率是:………6分

        消費總額為1300元的概率是:

        ,

        所以消費總額大于或等于1300元的概率是;……………………8分

        (3),

        所以的分布列為:

        0

        1

        2

        3

         

        0.294

        0.448

        0.222

        0.036

        ………………………………………………11分

               數(shù)學(xué)期望是:!12分

        19.(1)證明:因為,所以平面

        又因為,平面,

        平面平面;…………………4分

        (2)因為,所以平面,

        所以點到平面的距離等于點E到平面的距離,

        過點E作EF垂直CD且交于點F,因為平面平面,

        所以平面

        所以的長為所求,………………………………………………………6分

        因為,所以為二面角的平面角,,=1,

        到平面的距離等于1;…………………………8分

               (3)連接,由平面,,得到,

               所以是二面角的平面角,

               ,…………………………………………………11分

               又因為平面平面,二面角的大小是!12分

        20.解:(1)設(shè)等差數(shù)列的公差為,依題意得:

              

               解得,所以,…………………3分

               所以

               ,

               所以;…………………………………………………………………6分

               (2),因為,

               所以數(shù)列是遞增數(shù)列,…8分

               當且僅當時,取得最小值,則:,

               所以,即的取值范圍是。………………12分

        21.解:(1)設(shè)點的坐標為,則點的坐標為,點的坐標為

        因為,所以,

        得到:,注意到不共線,

        所以軌跡方程為;……………5分

        (2)設(shè)點是軌跡C上的任意一點,則以為直徑的圓的圓心為,

        假設(shè)滿足條件的直線存在,設(shè)其方程為,直線被圓截得的弦為

         

        ……………………………………………………7分

        弦長為定值,則,即

        此時……………………………………………………9分

        所以當時,存在直線,截得的弦長為,

           當時,不存在滿足條件的直線!12分

        22.解:(1)設(shè),因為 上的增函數(shù),且,所以上的增函數(shù),

        所以,得到;所以的取值范圍為………4分

        (2)由條件得到,

        猜測最大整數(shù),……6分

        現(xiàn)在證明對任意恒成立,

        等價于,

        設(shè),

        時,,當時,

        所以對任意的都有,

        對任意恒成立,

        所以整數(shù)的最大值為2;……………………………………………………9分

        (3)由(2)得到不等式

        所以,……………………11分

        所以原不等式成立!14分

         

         


        同步練習(xí)冊答案