今給出三個(gè)二元函數(shù),請(qǐng)選出所有能夠成為關(guān)于的廣義“距離 的序號(hào): 查看更多

 

題目列表(包括答案和解析)

若對(duì)任意,()有唯一確定的與之對(duì)應(yīng),則稱為關(guān)于的二元函數(shù)。現(xiàn)定義滿足下列性質(zhì)的二元函數(shù)為關(guān)于實(shí)數(shù)的廣義“距離”:

  (1)非負(fù)性:,當(dāng)且僅當(dāng)時(shí)取等號(hào);

  (2)對(duì)稱性:;

  (3)三角形不等式:對(duì)任意的實(shí)數(shù)均成立.

今給出三個(gè)二元函數(shù),請(qǐng)選出所有能夠成為關(guān)于的廣義“距離”的序號(hào):

;②;③._________________.

查看答案和解析>>

若對(duì)任意,()有唯一確定的與之對(duì)應(yīng),則稱為關(guān)于的二元函數(shù),F(xiàn)定義滿足下列性質(zhì)的二元函數(shù)為關(guān)于實(shí)數(shù)的廣義“距離”:  (1)非負(fù)性:,當(dāng)且僅當(dāng)時(shí)取等號(hào);  (2)對(duì)稱性:;  (3)三角形不等式:對(duì)任意的實(shí)數(shù)均成立.今給出三個(gè)二元函數(shù),請(qǐng)選出所有能夠成為關(guān)于的廣義“距離”的序號(hào):①;②;③.________.

查看答案和解析>>

若對(duì)任意有唯一確定的與之對(duì)應(yīng),則稱為關(guān)于x,y的二元函數(shù),現(xiàn)定義滿足下列性質(zhì)的為關(guān)于實(shí)數(shù)x,y的廣義“距離”:

   (1)非負(fù)性:,當(dāng)且僅當(dāng)x=y時(shí)取等號(hào);

(2)對(duì)稱性:

   (3)三角形不等式:對(duì)任意的

實(shí)數(shù)z均成立。

給出三個(gè)二元函數(shù):①

   則所有能夠成為關(guān)于x,y的廣義“距離”的序號(hào)為       。

查看答案和解析>>

若對(duì)任意有唯一確定的與之對(duì)應(yīng),則稱為關(guān)于x,y的二元函數(shù),現(xiàn)定義滿足下列性質(zhì)的為關(guān)于實(shí)數(shù)x,y的廣義“距離”:  

(1)非負(fù)性:,當(dāng)且僅當(dāng)x=y時(shí)取等號(hào);

(2)對(duì)稱性:

給出三個(gè)二元函數(shù):

    ②     ③

則所有能夠成為關(guān)于x,y的廣義“距離”的序號(hào)為           。

查看答案和解析>>

若對(duì)任意,,(、)有唯一確定的與之對(duì)應(yīng),稱為關(guān)于、的二元函數(shù).現(xiàn)定義滿足下列性質(zhì)的二元函數(shù)為關(guān)于實(shí)數(shù)的廣義“距離”:

(1)非負(fù)性:,當(dāng)且僅當(dāng)時(shí)取等號(hào);

(2)對(duì)稱性:

(3)三角形不等式:對(duì)任意的實(shí)數(shù)z均成立.

今給出四個(gè)二元函數(shù):①;②;③;

.能夠成為關(guān)于的、的廣義“距離”的函數(shù)的所有序號(hào)是(      )

A. ①       B. ②      C. ③     D. ④

 

查看答案和解析>>

 

一、CABCB   BDADD   AC

二、13.  0.1;14.;15. 36;16.存在,通項(xiàng)公式。

三、

17.解:(1)依題意得:

得:,

所以:,即,………………………………4分

    <code id="mijwh"><dfn id="mijwh"><big id="mijwh"></big></dfn></code>
  • 20090508

    (2)設(shè),則,

        由正弦定理:,

           所以兩個(gè)正三角形的面積和,…………8分

                  ……………10分

           ,

           所以:……………………………………12分

    18.解:(1);………………………4分

           (2)消費(fèi)總額為1500元的概率是:………………………5分

    消費(fèi)總額為1400元的概率是:………6分

    消費(fèi)總額為1300元的概率是:

    ,

    所以消費(fèi)總額大于或等于1300元的概率是;……………………8分

    (3),

    ,

    所以的分布列為:

    0

    1

    2

    3

     

    0.294

    0.448

    0.222

    0.036

    ………………………………………………11分

           數(shù)學(xué)期望是:!12分

    19.(1)證明:因?yàn)?sub>,所以平面

    又因?yàn)?sub>,平面,

    平面平面;…………………4分

    (2)因?yàn)?sub>,所以平面,

    所以點(diǎn)到平面的距離等于點(diǎn)E到平面的距離,

    過點(diǎn)E作EF垂直CD且交于點(diǎn)F,因?yàn)槠矫?sub>平面,

    所以平面

    所以的長(zhǎng)為所求,………………………………………………………6分

    因?yàn)?sub>,所以為二面角的平面角,,=1,

    點(diǎn)到平面的距離等于1;…………………………8分

           (3)連接,由平面,得到

           所以是二面角的平面角,

           ,…………………………………………………11分

           又因?yàn)槠矫?sub>平面,二面角的大小是。……12分

    20.解:(1)設(shè)等差數(shù)列的公差為,依題意得:

           ,

           解得,所以,…………………3分

           所以

           ,

           所以;…………………………………………………………………6分

           (2),因?yàn)?sub>

           所以數(shù)列是遞增數(shù)列,…8分

           當(dāng)且僅當(dāng)時(shí),取得最小值,則:,

           所以,即的取值范圍是。………………12分

    21.解:(1)設(shè)點(diǎn)的坐標(biāo)為,則點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為

    因?yàn)?sub>,所以,

    得到:,注意到不共線,

    所以軌跡方程為;……………5分

    (2)設(shè)點(diǎn)是軌跡C上的任意一點(diǎn),則以為直徑的圓的圓心為,

    假設(shè)滿足條件的直線存在,設(shè)其方程為,直線被圓截得的弦為,

     

    ……………………………………………………7分

    弦長(zhǎng)為定值,則,即

    此時(shí)……………………………………………………9分

    所以當(dāng)時(shí),存在直線,截得的弦長(zhǎng)為,

       當(dāng)時(shí),不存在滿足條件的直線!12分

    22.解:(1)設(shè),因?yàn)?sub> 上的增函數(shù),且,所以上的增函數(shù),

    所以,得到;所以的取值范圍為………4分

    (2)由條件得到

    猜測(cè)最大整數(shù),……6分

    現(xiàn)在證明對(duì)任意恒成立,

    等價(jià)于,

    設(shè),

    當(dāng)時(shí),,當(dāng)時(shí),

    所以對(duì)任意的都有,

    對(duì)任意恒成立,

    所以整數(shù)的最大值為2;……………………………………………………9分

    (3)由(2)得到不等式

    所以,……………………11分

    所以原不等式成立!14分

     

     


    同步練習(xí)冊(cè)答案