(3)求二面角的大小. 查看更多

 

題目列表(包括答案和解析)

(08年濰坊市六模) (12分)如圖,正三棱柱的底面邊長(zhǎng)為a,點(diǎn)M在邊BC上,△是以點(diǎn)M為直角頂點(diǎn)的等腰直角三角形.

 

 。1)求證點(diǎn)M為邊BC的中點(diǎn);

 。2)求點(diǎn)C到平面的距離;

 。3)求二面角的大。

 

查看答案和解析>>

把正方形以邊所在直線為軸旋轉(zhuǎn)到正方形,其中分別為的中點(diǎn).

(1)求證:∥平面;

(2)求證:平面;

(3)求二面角的大小.

 

查看答案和解析>>

(本題滿(mǎn)分16分)如圖,在四棱錐中,底面且邊長(zhǎng)為的菱形,側(cè)面是等邊三角形,且平面垂直于底面

(1)若的中點(diǎn),求證:平面;

(2)求證:;

(3)求二面角的大小.

 

查看答案和解析>>

如圖,正方形所在的平面與平面垂直,的交點(diǎn),,且

(1)求證:平面

(2)求直線與平面所成的角的大。

(3)求二面角的大。

查看答案和解析>>

在四棱錐中,底面是正方形,側(cè)棱底面,的中點(diǎn),作

(1)證明:

(2)證明:;

(3)求二面角 的大小。

 

 

 

查看答案和解析>>

一、

C A CBC     A D AB D     B A

二、

13.5;   14.;     15. 36;      16.20

三、

17.解:(1)依題意得:

所以:,……4分

<strong id="7abhw"></strong>

    20090508

    (2)設(shè),則,

    由正弦定理:,

    所以?xún)蓚(gè)正三角形的面積和,…………8分

    ……………10分

    ,

    所以:………………………………………………………………12分

    18.解:(1);……………………6分

    (2)消費(fèi)總額為1500元的概率是:……………………7分

    消費(fèi)總額為1400元的概率是:………8分

    消費(fèi)總額為1300元的概率是:

    ,…11分

    所以消費(fèi)總額大于或等于1300元的概率是;……………………12分

    19.(1)證明:因?yàn)?sub>,所以平面,

    又因?yàn)?sub>,

    平面,

    平面平面;…………………4分

    (2)因?yàn)?sub>,所以平面,所以點(diǎn)到平面的距離等于點(diǎn)E到平面的距離,

    過(guò)點(diǎn)E作EF垂直CD且交于點(diǎn)F,因?yàn)槠矫?sub>平面,所以平面,

    所以的長(zhǎng)為所求,………………………………………………………………………6分

    因?yàn)?sub>,所以為二面角的平面角,,

    =1,

    點(diǎn)到平面的距離等于1;…………………………………………………………8分

    (3)連接,由平面,,得到,

    所以是二面角的平面角,

    ,…………………………………………………………………11分

    二面角大小是!12分

    20.解:(1)設(shè)等差數(shù)列的公差為,依題意得:

    解得,所以,…………………3分

    所以

    ,

    所以;…………………………………………………………………6分

    (2),因?yàn)?sub>,所以數(shù)列是遞增數(shù)列,…8分

    當(dāng)且僅當(dāng)時(shí),取得最小值,

    則:,

    所以,即的取值范圍是!12分

    21.解:(1)設(shè)點(diǎn)的坐標(biāo)為,則點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,

    因?yàn)?sub>,所以,得到:,注意到不共線,所以軌跡方程為;…………………………………5分

    (2)設(shè)點(diǎn)是軌跡C上的任意一點(diǎn),則以為直徑的圓的圓心為,

    假設(shè)滿(mǎn)足條件的直線存在,設(shè)其方程為,直線被圓截得的弦為,

     

    …………………………………………7分

    弦長(zhǎng)為定值,則,即,

    此時(shí),……………………………………………………9分

    所以當(dāng)時(shí),存在直線,截得的弦長(zhǎng)為,

        當(dāng)時(shí),不存在滿(mǎn)足條件的直線!12分

    22.解:(1)

    ,……2分

    因?yàn)楫?dāng)時(shí)取得極大值,所以,

    所以的取值范圍是:;………………………………………………………4分

    (2)由下表:

    0

    0

    遞增

    極大值

    遞減

    極小值

    遞增

    ………………………7分

    畫(huà)出的簡(jiǎn)圖:

    依題意得:,

    解得:,

    所以函數(shù)的解析式是:

    ;……9分

    (3)對(duì)任意的實(shí)數(shù)都有

    ,

    依題意有:函數(shù)在區(qū)間

    上的最大值與最小值的差不大于,

    ………10分

    在區(qū)間上有:

    ,

    的最大值是

    的最小值是,……13分

    所以

    的最小值是。………………………………………14分

     

     


    同步練習(xí)冊(cè)答案