題目列表(包括答案和解析)
若整數(shù)滿足不等式,則稱為的“親密整數(shù)”,記作,即,已知函數(shù).給出以下四個(gè)命題:
① 函數(shù)是周期函數(shù)且其最小正周期為1;
② 函數(shù)的圖象關(guān)于點(diǎn)中心對(duì)稱;
③ 函數(shù)在上單調(diào)遞增;
④ 方程在上共有7個(gè)不相等的實(shí)數(shù)根.
其中正確命題的序號(hào)是 .(寫出所有正確命題的序號(hào)).
(08年龍巖一中模擬文)已知函數(shù),給出以下四個(gè)命題,其中真命題是( )
A.若, 則函數(shù)y的值域?yàn)?IMG height=25 src='http://thumb.zyjl.cn/pic1/img/20090422/20090422164428003.gif' width=48>; B.在區(qū)間上是增函數(shù);
C.直線是函數(shù)圖象的一條對(duì)稱軸;
D.其圖象可由的圖象按向量=(,0)平移后而得到.
一、選擇題:
題號(hào)
1
2
3
4
5
6
7
8
9
10
11
12
答案
A
D
C
D
C
A
B
C
B
D
B
C
二、填空題:
13、 14、8 15、等; 16、7
三、解答題
17、(1)由余弦定理: 又
∴ ∴
(2)∵A+B+C= ∴
∴
18、(1)周銷售量為2噸,3噸,4噸的頻率分別為0.2,0.5,和0.3。
(2)可能的值為8,10,12,14,16
8
10
12
14
16
P
0.04
0.2
0.37
0.3
0.09
則的分布列為
∴(千元)
19、(1)AC=1,BC=2 ,AB= ,∴∴AC
又 平面PAC平面ABC,平面PAC平面ABC=AC,∴BC平面PAC
又∵PA平面APC ∴
(2)該幾何體的主試圖如下:
幾何體主試圖的面積為
∴ ∴
(3)取PC 的中點(diǎn)N,連接AN,由△PAC是邊長(zhǎng)為1的正三角形,可知
由(1)BC平面PAC,可知 ∴平面PCBM
∴
20、(1)要使得不等式能成立,只需
∴
∴,故實(shí)數(shù)m的最小值為1
(2)由得
令 ∵,列表如下:
x
0
(0,1)
1
(1,2)
2
0
1
減函數(shù)
增函數(shù)
3-2ln3
∴
21、(1)曲線C的方程為
(2),存在點(diǎn)M(―1,2)滿足題意
22、(1)由于點(diǎn)B1(1,y1),B2(2,y2),…,Bn(n,yn)()在直線上
則 因此,所以是等差數(shù)列
(2)由已知有得 同理
∴
∴
∴
(3)由(2)得,則
∴
∴
∴
由于 而
則,從而
同理:……
以上個(gè)不等式相加得:
即,從而
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com