2.對(duì)于兩條直線a,b和平面的 A.充分但不必要條件 B.必要但不充分條件 C.充要條件 D.既不充分也不必要條件 查看更多

 

題目列表(包括答案和解析)

對(duì)于兩條直線a,b和平面,若的                                      

A.充分但不必要條件                                     B.必要但不充分條件

C.充要條件                                                  D.既不充分又不必要條件

查看答案和解析>>

(09年武漢二中調(diào)研)對(duì)于兩條直線a,b和平面,若的     (    )

    A.充分但不必要條件                    B.必要但不充分條件

    C.充要條件                            D.既不充分也不必要條件

查看答案和解析>>

對(duì)于兩條直線a,b和平面,若的                                      

A.充分但不必要條件                                     B.必要但不充分條件

C.充要條件                                                  D.既不充分又不必要條件

查看答案和解析>>

指出下列命題的條件p和結(jié)論q

(1)若空間四邊形為正四面體,則頂點(diǎn)在底面上的射影為底面的中心;

(2)若兩條直線ab都和直線c平行,則直線a和直線b平行.

查看答案和解析>>

設(shè)是兩個(gè)不重合的平面,給出下列命題:

①若內(nèi)兩條相交直線分別平行于內(nèi)的兩條直線 ,則;

②若外一條直線內(nèi)一條直線平行,則;

③設(shè),若內(nèi)有一條直線垂直于,則;

④直線的充要條件是內(nèi)的兩條直線垂直。

上面的命題中,真命題的序號(hào)是                           (   )

A. ①②        B. ②③       C. ①②③        D. ②③④

 

查看答案和解析>>

 

一、選擇題(共60分)

1―6DDBBAC  7―12DABCAC

二、填空題:(本大題共5小題,每小題5分,共20分)

13.3

14.

15.

16.240

三、解答題:本大題有6小題,共70分,解答應(yīng)寫(xiě)出文字說(shuō)明,證明過(guò)程或演算步驟。

17.解:(1)

          1分

      

          5分

   (2)

          7分

       由余弦定理   9分

           10分

18.(1)記“這名考生通過(guò)書(shū)面測(cè)試”為事件A,則這名考生至少正確做出3道題,即正確做出3道題或4道題,

       故   4分

   (2)由題意得的所有可能取值分別是0,1,2,3,4,且

 

      

      

          8分

      

       的分布列為:

      

0

1

2

3

4

P

          10分

          12分

19.解法一:(1)在直平行六面體ABCD―A1B1C1D1中,

      

       又

          4分

       又

   (2)如圖,連B1C,則

       易證

       中點(diǎn),

      

          8分

       取CD中點(diǎn)M,連BM, 則平面CC1D1D,

       作于N,連NB,由三垂線定理知:

       是二面角B―DE―C的平面角     10分

       在

      

       則二面角B―DE―C的大小為    12分

       解法二:(1)以D為坐標(biāo)原點(diǎn),射線DA為軸,建立如圖所示坐標(biāo)為

       依題設(shè)

      

      

       又

       平面BDE    6分

<label id="mkahh"></label>
  • <ins id="mkahh"><th id="mkahh"></th></ins>
    <thead id="mkahh"></thead>
    •        8分

             由(1)知平面BDE的一個(gè)法向量為

             取DC中點(diǎn)M,則

            

            

             等于二面角B―DE―C的平面角    10分

                12分

      20.解:(1)由已知得   2分

             由

            

             遞減

             在區(qū)間[-1,1]上的最大值為   4分

             又

            

             由題意得

             故為所求         6分

         (2)解:

            

                 8分

             二次函數(shù)的判別式為:

            

             令

             令    10分

            

             為單調(diào)遞增,極值點(diǎn)個(gè)數(shù)為0    11分

             當(dāng)=0有兩個(gè)不相等的實(shí)數(shù)根,根據(jù)極值點(diǎn)的定義,可知函數(shù)有兩個(gè)極值點(diǎn)    12分

      21.解:(1)設(shè)

             化簡(jiǎn)得    3分

         (2)將    4分

             法一:兩點(diǎn)不可能關(guān)于軸對(duì)稱(chēng),

             的斜率必存在

             設(shè)直線DE的方程為

             由   5分

                 6分

                7分

             且

                8分

             將代化入簡(jiǎn)得

                9分

             將,

             過(guò)定點(diǎn)(-1,-2)    10分

             將,

             過(guò)定點(diǎn)(1,2)即為A點(diǎn),舍去     11分

                 12分

             法二:設(shè)    (5分)

             則   6分

             同理

             由已知得   7分

             設(shè)直線DE的方程為

             得   9分

                10分

             即直線DE過(guò)定點(diǎn)(-1,-2)    12分

      22.解:(1)由    2分

             于是

             即    3分

             有   5分

                6分

         (2)由(1)得    7分

             而

            

                     

                 10分

             當(dāng)

             于是

             故命題得證     12分


      同步練習(xí)冊(cè)答案