(4)試一試:請利用以前學(xué)習(xí)的有關(guān)知識將化簡成a+bi的形式. 查看更多

 

題目列表(包括答案和解析)

閱讀理解題:
定義:如果一個數(shù)的平方等于-1,記為i2=-1,這個數(shù)i叫做虛數(shù)單位.那么和我們所學(xué)的實(shí)數(shù)對應(yīng)起來就叫做復(fù)數(shù),表示為a+bi(a,b為實(shí)數(shù)),a叫這個復(fù)數(shù)的實(shí)部,b叫做這個復(fù)數(shù)的虛部,它的加,減,乘法運(yùn)算與整式的加,減,乘法運(yùn)算類似.
例如計(jì)算:(2+i)+(3-4i)=5-3i.
(1)填空:i3=
 
,i4=
 

(2)計(jì)算:①(2+i)(2-i);②(2+i)2;
(3)若兩個復(fù)數(shù)相等,則它們的實(shí)部和虛部必須分別相等,完成下列問題:已知:(x+y)+3i=(1-x)-yi,(x,y為實(shí)數(shù)),求x,y的值.
(4)試一試:請利用以前學(xué)習(xí)的有關(guān)知識將
1+i1-i
化簡成a+bi的形式.

查看答案和解析>>

閱讀理解題:
定義:如果一個數(shù)的平方等于-1,記為i2=-1,這個數(shù)i叫做虛數(shù)單位.那么和我們所學(xué)的實(shí)數(shù)對應(yīng)起來就叫做復(fù)數(shù),表示為a+bi(a,b為實(shí)數(shù)),a叫這個復(fù)數(shù)的實(shí)部,b叫做這個復(fù)數(shù)的虛部,它的加,減,乘法運(yùn)算與整式的加,減,乘法運(yùn)算類似.
例如計(jì)算:(5+i)×(3-4i)=19-17i.
(1)填空:i3=
 
,i4=
 

(2)計(jì)算:(3+i)2;
(3)試一試:請利用以前學(xué)習(xí)的有關(guān)知識將
2+i2-i
化簡成a+bi的形式.

查看答案和解析>>

閱讀理解題:

定義:如果一個數(shù)的平方等于-1,記為i2=-1,這個數(shù)i叫做虛數(shù)單位.那么和我們所學(xué)的實(shí)數(shù)對應(yīng)起來就叫做復(fù)數(shù),表示為a+bi(a,b為實(shí)數(shù)),a叫這個復(fù)數(shù)的實(shí)部,b叫做這個復(fù)數(shù)的虛部,它的加,減,乘法運(yùn)算與整式的加,減,乘法運(yùn)算類似.

例如計(jì)算:(2+i)+(3-4i)=(2+3)+(1-4)i=5-3i.

(1)填空:i3=         , i4=         .

(2)計(jì)算:①(1+i)(1-i);              ②(1+i)2

(3)試一試:請利用以前學(xué)習(xí)的有關(guān)知識將化簡成a+bi的形式.

 

查看答案和解析>>

閱讀理解題:定義:如果一個數(shù)的平方等于-1,記為i2=-1,這個數(shù)i叫做虛數(shù)單位.那么形如a+bi(a,b為實(shí)數(shù))的數(shù)就叫做復(fù)數(shù), a叫這個復(fù)數(shù)的實(shí)部,b叫做這個復(fù)數(shù)的虛部,它的加,減,乘法運(yùn)算與整式的加,減,乘法運(yùn)算類似.例如計(jì)算:(2+i)+(3-4i)=5-3i.

1.填空:i3=_____,i4=_______ ;

2.計(jì)算:①;②

3.若兩個復(fù)數(shù)相等,則它們的實(shí)部和虛部必須分別相等,完成下列問題:

已知:(x+y)+3i=(1-x)-yi,(x,y為實(shí)數(shù)),求x,y的值.

4.試一試:請利用以前學(xué)習(xí)的有關(guān)知識將化簡成a+bi的形式

 

查看答案和解析>>

閱讀理解題:定義:如果一個數(shù)的平方等于-1,記為i2=-1,這個數(shù)i叫做虛數(shù)單位.那么形如a+bi(a,b為實(shí)數(shù))的數(shù)就叫做復(fù)數(shù), a叫這個復(fù)數(shù)的實(shí)部,b叫做這個復(fù)數(shù)的虛部,它的加,減,乘法運(yùn)算與整式的加,減,乘法運(yùn)算類似.例如計(jì)算:(2+i)+(3-4i)=5-3i.
【小題1】填空:i3=_____,i4="_______" ;
【小題2】計(jì)算:①;②
【小題3】若兩個復(fù)數(shù)相等,則它們的實(shí)部和虛部必須分別相等,完成下列問題:
已知:(x+y)+3i=(1-x)-yi,(x,y為實(shí)數(shù)),求x,y的值.
【小題4】試一試:請利用以前學(xué)習(xí)的有關(guān)知識將化簡成a+bi的形式

查看答案和解析>>

1. C   2. B   3.D   4.B  5.D   6.C  7. C   8. C   9.D   10.A 

11.4

12.y=2(x+3)2-7

13.

14.3

15.153

16.9800

17.解:原式=                     ………    2分

∵x≠0且x≠且x≠2                                      ………  3分

∴x=-1                                                 …………… 4分

∴原式==-                                  ………… 5分

18.(1)答案不惟一,例如四個圖案具有的共同特征可以是:①都是軸對稱圖形;②面積都等于四個小正方形的面積之和;③都是直線形圖案。。。。。只要寫出兩個即可。…… 3分

(2)答案示例:


……  6分

19.已知:如圖所示,AD為ΔABC的中線,且CF⊥AD于F,BE⊥AD的延長線于E.

求證;BE=CF.

證明:∵AD為ΔABC的中線。                                

∴BD=CD.              ………  1分

∵BE⊥AD,CF⊥AD.

∴∠BED=∠CFD=90º .  ………  3分

又∠1=∠2.

∴ΔBED≌ΔCFD(AAS).     ……… 5分

BE=CF                  ……… 7分

(本題還可以作AN⊥BC于N,利用等底等高的兩個三角形的面積相等的性質(zhì)證明)

20.(1)A品牌牙膏主要競爭優(yōu)勢是質(zhì)量,①對A品牌牙膏的質(zhì)量滿意的最多;②對A品牌牙膏的廣告,價格滿意的不是最多;③對A品牌牙膏購買的人最多 

∴ A品牌牙膏靠的是質(zhì)量優(yōu)勢     ……………2分

(2)廣告對用戶選擇品牌有影響,原因是:①對B,C牙膏的質(zhì)量,價格滿意的用戶,相差不大;②對B品牌的廣告,滿意的用戶比C多,相差較大;③購買B品牌的用戶高于C.

   ∴廣告影響用戶選擇品牌 。    ………………………………….      5分

(3)首先要提高質(zhì)量,其次加大廣告力度,最后注意合理的價格。……………      8分

21.(1)34.5元                    ………………………      2分

(2)35.5元,28.5元             ………………………     4分

(3)1331.25元                   ………………………     8分

22.羊可以吃到的草的最大面積由三部分組成:第一部分:以點(diǎn)A為圓心,12米為半徑。圓心角為60°的扇形的面積減去三角形ABC的面積;第二部分:以點(diǎn)B為圓心,6米為半徑,圓心角為60°的扇形面積;第三部分與第二部分相等。  ………………    3分

因此,羊可以吃到的草的面積是:

(平方米)    ……………  8分

23.解;根據(jù)題意易知,水柱上任意一個點(diǎn)距中心的水平距離為x,與此點(diǎn)的

高度y之間的函數(shù)關(guān)系式是:      ...............          1分

Y=a1(x+4)2+6 (-10≤x<0 )或 y=a2(x+4)2+6 (0≤x≤10).....   3分

由x=-10,y=0, 可得a1=-; 由x=10, y=0, 可得a2=-  .....   5分 

于是,所求函數(shù)解析式是 Y=-(x+4)2+6 (-10≤x<0 )

y=-(x+4)2+6(0≤x≤10)     ………  6分

    當(dāng)x=0時,y=             

    所以裝飾物的高度為m   ………  8分

24.(1)連接O,D與B,D兩點(diǎn)。

∵ΔBDC是RtΔ, 且E為BC中點(diǎn)。

∴∠EDB=∠EBD.         ………    2分

又∵OD=OB  且∠EBD+∠DBO=90°       

∴∠EDB+∠ODB=90°

∴DE是⊙O的切線;       ……    4分

(2)∵∠EDO=∠B=90°,

若要AOED是平行四邊形,則DE∥AB,D為AC中點(diǎn)。

又∵BD⊥AC,

∴ΔABC為等腰直角三角形。

∴∠CAB=45°.         ……     6分    

過E作EH⊥AC于H.

設(shè)BC=2k,

則EH=  ………  8分

∴sin∠CAE=    ……  10分

25.(1) ?i    1                       …2分.

(2)①5   ②3+4i                    …4分

(3)已知(x+y)+3i=1-(x+y)i

可得(x+y)+3i=(1-x)-yi         …5分

∴x+y=1-x, 3=-y                  …6分

∴x=2   y=-3                     …   8分

(4)解原式:=    …   12分

 


同步練習(xí)冊答案