設函數(shù)()為奇函數(shù)...則 查看更多

 

題目列表(包括答案和解析)

設函數(shù)f(x)=ax3+bx+c(a≠0)為奇函數(shù),其圖象在點(1,f(1))處的切線與直線x-6y-7=0垂直,導函數(shù)f′(x)的最小值為-12
(1)求a,b,c的值;
(2)求函數(shù)f(x)的單調(diào)增區(qū)間,并求函數(shù)f(x)在[-1,3]上的最大值和最小值
(3)若對任意x∈(0,m),都有f(x)<6x恒成立,求m的范圍.

查看答案和解析>>

設函數(shù)f(x)=a•sin(x+α1)+b•sin(x+α2),其中a,b,α1,α2為已知實常數(shù),下列關于函數(shù)f(x)的性質(zhì)判斷正確的命題的序號是
①②③
①②③

①若f(0)=f(
π
2
)=0
,則f(x)=0對任意實數(shù)x恒成立;
②若f(0)=0,則函數(shù)f(x)為奇函數(shù);
③若f(
π
2
)=0
,則函數(shù)f(x)為偶函數(shù).

查看答案和解析>>

設函數(shù)f(x)=x|x-a|+b,求證:f(x)為奇函數(shù)的充要條件是a2+b2=0.

查看答案和解析>>

設函數(shù)f(x)=
log
1-mx
x-1
a
為奇函數(shù),g(x)=f(x)+loga(x-1)(ax+1)( a>1,且m≠1).
(1)求m值;
(2)求g(x)的定義域;
(3)若g(x)在[-
5
2
,-
3
2
]
上恒正,求a的取值范圍.

查看答案和解析>>

α∈{-1,
1
2
,
2
3
,3}
,則使函數(shù)y=xα的定義域為R且為奇函數(shù)的α的值為( 。

查看答案和解析>>

題號

1

2

3

4

5

6

7

8

9

10

答案

D

C

D

B

C

A

C

B

D

B

11、2;12、;13、;14、;15、;16、

17、解:(1)
,   (6分)
的最小正周期為.                                 (8分)
(2)∵,∴,
.                               (12分)

18、解:(1)表示取出的三個球中數(shù)字最大者為3.

①三次取球均出現(xiàn)最大數(shù)字為3的概率

②三取取球中有2次出現(xiàn)最大數(shù)字3的概率

③三次取球中僅有1次出現(xiàn)最大數(shù)字3的概率

.   ……………………………………………………6分

(2)在時, 利用(1)的原理可知:

,(=1,2,3,4)

 的概率分布為:

 

 

 

=1×+2×+3×+4× = .………………………………………………12分

19、解:(Ⅰ)作,垂足為,連結,由側面底面,得底面

因為,所以,

,故為等腰直角三角形,,

由三垂線定理,得

(Ⅱ)由(Ⅰ)知,依題設,

,由,,,得

,

的面積

連結,得的面積

到平面的距離為,由于,得

,

解得

與平面所成角為,則

所以,直線與平面所成的我為

20、解:(I)由題意知,因此,從而

又對求導得

由題意,因此,解得

(II)由(I)知),令,解得

時,,此時為減函數(shù);

時,,此時為增函數(shù).

因此的單調(diào)遞減區(qū)間為,而的單調(diào)遞增區(qū)間為

(III)由(II)知,處取得極小值,此極小值也是最小值,要使)恒成立,只需

,從而,

解得

所以的取值范圍為

21、解:(Ⅰ)解法一:易知

所以,設,則

因為,故當,即點為橢圓短軸端點時,有最小值

,即點為橢圓長軸端點時,有最大值

解法二:易知,所以,設,則

(以下同解法一)

(Ⅱ)顯然直線不滿足題設條件,可設直線,

聯(lián)立,消去,整理得:

得:

,即  ∴

故由①、②得

22、(I)解:方程的兩個根為,,

時,,

所以

時,,

所以;

時,,,

所以時;

時,,

所以

(II)解:

(III)證明:,

所以

時,

,

同時,

綜上,當時,

 

 

 


同步練習冊答案