過正方體的8個頂點中任意兩點的直線.與平面垂直的直線條數(shù)有多少?并加以證明. 查看更多

 

題目列表(包括答案和解析)

(2012年高考江蘇卷19) (本小題滿分16分)

如圖,在平面直角坐標系xOy中,橢圓的左、右焦點分別為,.已知都在橢圓上,其中e為橢圓的離心率.

(1)求橢圓的離心率;

(2)設A,B是橢圓上位于x軸上方的兩點,且直線

與直線平行,交于點P

(i)若,求直線的斜率;

(ii)求證:是定值.

查看答案和解析>>

(2010安徽理數(shù))19、(本小題滿分13分)

已知橢圓經(jīng)過點,對稱軸為坐標軸,焦點

軸上,離心率。

    (Ⅰ)求橢圓的方程;

(Ⅱ)求的角平分線所在直線的方程;

(Ⅲ)在橢圓上是否存在關于直線對稱的相異兩點?

若存在,請找出;若不存在,說明理由。

查看答案和解析>>

(本小題滿分12分)如圖所示,在直三棱柱中,、分別是、、的中點,上的點.

(1)求直線與平面所成角的正切值的最大值;

(2)求證:直線平面

(3)求直線與平面的距離.

(第19題圖)

 

 

 

查看答案和解析>>

. 19(本小題滿分14分)

       已知橢圓 (a>b>0)與直線

       x+y-1 = 0相交于A、B兩點,且OAOB

       (O為坐標原點).

(I)   求 + 的值;

(II)  若橢圓長軸長的取值范圍是[,],

       求橢圓離心率e的取值范圍.

查看答案和解析>>

(本小題滿分12分)
在清明節(jié)前,哈市某單位組織員工參加植樹祭掃,林管局在植樹前為了保證樹苗質(zhì)量,都會對樹苗進行檢測,現(xiàn)從甲、乙兩種樹苗中各抽測了10株樹苗的高度,量出它們的高度如下:(單位:厘米)
甲:37  21  31  21  28  19  32  23  25  33
乙:10  30  47  27  46  14  26  11  43  46
(1)根據(jù)抽測結果畫出莖葉圖,并根據(jù)你所填寫的莖葉圖對兩種樹苗高度作比較,寫出3個統(tǒng)計結論;
(2)如果認為甲種樹苗高度超過30厘米為優(yōu)質(zhì)樹苗,那么在己抽測的甲種10株樹苗中任選兩株栽種,記優(yōu)質(zhì)樹苗的個數(shù)為,求的分布列和期望.

查看答案和解析>>

一、選擇題:本大題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。

1.答案:A

解:依題意可知:由

顯然:不能推出。

故選A ;

2.答案:D

解:依題意可知:設點,則在點P處的切線的斜率為,即,又

故選D ;

3.答案:C

解:依題意可知:由是奇函數(shù),

故選C ;

4.答案:A

解:依題意可知:由

故選A;

5.答案:C

解:如圖:函數(shù)是周期函數(shù),T=1。

故選C;

 

6.答案:A

解:依題意可知:由,,

。

故選A ;

7.答案:B

解:依題意可知:由圖可知:

8.答案:A

解:依題意可知:如圖,

,

則在中,;

則在中,;

則在中,;

 

故選A ;

9.答案:D

解:依題意可知:因表示與同方向的單位向量,

表示與同方向的單位向量,故,而,

又(+,說明向量與向量垂直,根據(jù)向量加法的平行四邊形法則可知:向量所在直線 過向量所在線段中點,根據(jù)等腰三角形三線合一的性質(zhì),可逆推為等腰三角形。又夾角為,故為等邊三角形。

故選D ;

10.答案:A

解:設,在上,,,,排除D;在上,,,,排除B與C;故選A。

11.答案:B

解法一:正方體的八個頂點可確定條直線;條直線組成對直線;正方體的八個頂點可確定個面,其中12個四點面(6個表面,4個面對角面,2個體對角面),8個三點面;每個四點面上有條直線,6條直線組成對直線,12個四點面由12×15=180對直線組成;每個三點面上有條直線,3條直線組成對直線,8個三點面由8×3=24對直線組成;由正方體的八個頂點中的兩個所確定的所有直線中,取出兩條,這兩條直線是異面直線的概率為;

解法二:正方體的八個頂點可確定個四面體,每個四面體中有三對異面直線,由正方體的八個頂點中的兩個所確定的所有直線中,取出兩條,這兩條直線是異面直線的概率為;

12.答案:A

解:①正確;①中依題意可令,

時,上為減函數(shù),

又因在區(qū)間為減函數(shù),故;

②錯誤;②中

③錯誤;③中當時,

④正確;

圓的對稱軸為直徑所在的直線,故原命題正確。

故答案為:A。

二、填空題:本大題共4小題,每小題4分,共16分,把答案填在橫線上。

13.答案:

解:設P點的坐標為,則

直線PQ的方程為:

Q點的坐標為,R點的坐標為

故答案為:;

14.答案:

解:依題意可知:正四棱錐S―ABCD的底面正方形ABCD在過球心O的大圓上,設球半徑為R,AC=2R=

;

設球心O到側(cè)面SAB的距離為,連接

,,過,

連接SM,則,

,

4

故答案為:;

15.答案:10

解:依題意可知:由,故的系數(shù)為。

故答案為:10    ;

16.答案:③

解:依題意可知:①錯,因在上,為減函數(shù),而在上,為增函數(shù)。

②錯,因在上,為增函數(shù),而在上,為減函數(shù)。

③正確。因在上,為增函數(shù)。

④錯,因在上,為增函數(shù),而在上,為減函數(shù),故時,函數(shù)有極大值。

⑤錯,因在上,為增函數(shù),故時,函數(shù)沒有極大值。

故答案為:③;

三、解答題:本大題共6小題,共74分,解答應寫出文字說明,證明過程或演算步驟。

(17)解:,設中有個元素,顯然有,其中最大的一個是,由于是正整數(shù)集合,故;

時,,此時不符合題意;

時,,顯然只有符合題意;

時,設其中,

此時令

,則   ,

不符合題意;

,由于是正整數(shù)集合,故,

 

    故時不符合題意;

綜上所述

(18)解:令

故當

(19)。答:與平面垂直的直線條數(shù)有1條為;

證法一:依題意由圖可知:連,

;

 

證法二:依題意由圖建立空間直角坐標系:

,

設與垂直的法向量為,則有:

,而,故。

(20)解:設S為勞動村全體農(nóng)民的集合,季度勞動村在外打工的農(nóng)民的集合,則季度勞動村沒有在外打工的農(nóng)民的集合,由題意有

所以

勞動村的農(nóng)民全年在外打工為,則

,

所以,

。

故勞動村至少有的農(nóng)民全年在外打工。

(21)解:①作圖進行受力分析,如下圖示;

由向量的平行四邊形法則,力的平衡及解直角三角形等知識,得出:

  

② ∵,∴

上為減函數(shù),

∴當逐漸增大時,也逐漸增大。

③要最小,則為最大,∴當時,最小,最小值是

④要,則,∴當時,。

(22)解:(Ⅰ)C的焦點為F(1,0),直線l的斜率為1,所以l的方程為

代入方程,并整理得  

則有  

所以夾角的大小為

(Ⅱ)由題設 得  

<div id="qcscy"><label id="qcscy"><style id="qcscy"></style></label></div><li id="qcscy"></li>

        <i id="qcscy"></i>

        由②得,  ∵    ∴

        聯(lián)立①、③解得,依題意有

        又F(1,0),得直線l方程為

          

        時,l在方程y軸上的截距為

        由     可知在[4,9]上是遞減的,

        直線l在y軸上截距的變化范圍為

        作者:     湖南省衡陽市祁東縣育賢中學  高明生 

        PC:       421600

        TEL:      0734---6184532

        Cellphone: 13187168216

        E―mail:   hunanqidonggms@163.com

        QQ:        296315069


        同步練習冊答案