題目列表(包括答案和解析)
①若m∥α,n∥α,則m∥n;
②設(shè)α-l-β是直二面角,若m⊥l,則m⊥β;
③若m、n在α內(nèi)的射影依次為一個點和一條直線,且m⊥n,則nα或n∥α;
④設(shè)m、n是異面直線,若m∥α,則n與α相交.
其中真命題的序號是___________(把所有真命題的序號都填上)
過橢圓的右焦點F作直線交橢圓于M,N兩點,設(shè)
(1)求直線的斜率;
(2)設(shè)M,N在直線上的射影分別為M1,N1,求的值
正三棱錐底面邊長為a,側(cè)棱與底面成60°角,則一個側(cè)面在底面的射影面積為( )。
A. 3a2 B. 2a2 C. a2 D.
如圖,已知斜三棱柱ABC-A1B1C1的底面△ABC為直角三角形,∠C=90°,側(cè)棱與底面成60°角,點B1在底面的射影D為BC的中點.
求證:AC⊥平面BCC1B1.
①若m∥α,n∥α,則m∥n;
②設(shè)α-l-β是直二面角,若m⊥l,則m⊥β;
③若m、n在α內(nèi)的射影依次為一個點和一條直線,m⊥n,則nα或n∥α;
④設(shè)m、n是異面直線,若m∥α,則n與α相交.
其中真命題的序號是___________.(把所有真命題的序號都填上)
一.選擇題
BADCC ACCCC AD
二.填空題
13. 14. 29 15.(開閉區(qū)間均可) 16. ① ④
三、解答題
17.解:
(1)∵, ∴,
即………3分
則 ., ∴………6分
(2)由題知,得, ………8分
得sinB=2cosB, ………10分
∴ ………12分
18.解:
(1)得分為60分,12道題必須全做對。在其余的5道題中,有兩道題答對的概率為,
有一道題答對的概率為,還有兩道答對的概率為………2分
所以得分為60分的概率為:P=………4分
(2)由可得 ………5分
得,得2<x<15,則x=5或x=10,則相應(yīng)得分為55分或50分……7分
得分為50分表示只做對了10道題,做錯2道題,所以概率為
+
+= ………9分
得分為55分表示只做對了11道題,做錯1道題,所以概率為:
P2== ………11分
則所求概率為+=。答:該考生得分的概率為 ………12分
19.證明:
(1)面A1B
又 面AB
B
(2)由于BC⊥面AB
又AB
(3)過H作HG⊥VB于G,連AG則∠AGH為二面角A-VB-C的平面角
在RtB1CB中 ………10分
又RtB1HG∽RtB1BC 則,即
故二面角A-VB-C的大小為………12分
(本題也可用建立空間直角坐標(biāo)系然后用空間向量求解,評分標(biāo)準(zhǔn)參照執(zhí)行)
20.解:
(1)設(shè){an}的公差d,為{bn}的公比為q,則
………6分
(2){Cn}的前n-1項中共有{an}中的1+2+3+…(n-1)=個項………8分
且{an}的第項為………10分
故Cn是首項為,公差為2,項數(shù)為n的等差數(shù)列的前n項和,
………12分
21.解:
(1)f‘(x)=x2+ax+b,由 f‘(3)=9+
(2)令f‘(x)= x2+ax
當(dāng)a=-6時,f‘(x)=≥0,則f(x)無單調(diào)遞減區(qū)間………4分
當(dāng)a>-6時,令f‘(x) =(x-3)(x+a+3)≤0,得-a-3≤x≤3,
則f(x)的單調(diào)遞減區(qū)間為[-a-3,3] ………6分
當(dāng)a<-6時,易得f(x)的單調(diào)遞減區(qū)間為[3,-a-3]
綜上所述當(dāng)a=-6時, f(x)無單調(diào)遞減區(qū)間;當(dāng)a>-6時,f(x)的單調(diào)遞減區(qū)間為[-a-3,3],
當(dāng)a<-6時, f(x)的單調(diào)遞減區(qū)間為[3,-a-3] ………8分
(3)由a>0知-a-3<-3,由(2)知f(x)在[-3,3]上是減函數(shù),又-3≤3cos≤3,-3≤3sin≤3,則要恒成立只要|f(-3)-f(3)|<72恒成立………10分
又|f(-3)-f(3)|=18|a+2|<72,得-6<a<2,又a>0,則0<a<2………12分
22.解:
(1)由題意設(shè)橢圓方程為………1分
則,橢圓方程為………4分
(2)設(shè),
則………7分
又則………9分
則=
………11分
由于,
因此的取值范圍為………14分
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com