題目列表(包括答案和解析)
已知函數(shù)=,.
(Ⅰ)求函數(shù)在區(qū)間上的值域;
(Ⅱ)是否存在實數(shù),對任意給定的,在區(qū)間上都存在兩個不同的,使得成立.若存在,求出的取值范圍;若不存在,請說明理由;
(Ⅲ)給出如下定義:對于函數(shù)圖象上任意不同的兩點,如果對于函數(shù)圖象上的點(其中總能使得成立,則稱函數(shù)具備性質(zhì)“”,試判斷函數(shù)是不是具備性質(zhì)“”,并說明理由.
(1)已知:,求函數(shù)f(x)的單調(diào)區(qū)間和值域;
(2)a≥1,函數(shù)g(x)=x3-3a2x-2a,x∈[0,1],判斷函數(shù)g(x)的單調(diào)性并予以證明;
(3)當a≥1時,上述(1)、(2)小題中的函數(shù)f(x)、g(x),若對任意x1∈[0,1],總存在x2∈[0,1],使得g(x2)=f(x1)成立,求a的取值范圍.
一、選擇題:
CCBCD CCBCA DD
二、填空題:
13、 14、 15、-6 16、
三、解答題:
17.解:(Ⅰ)
∵ 2分
=1+ 4分
∴最小正周期是,最小值為. 6分
(Ⅱ)解法一:因為,
令 8分
得函數(shù)在上的單調(diào)增區(qū)間為。 12分
解法二:作函數(shù)圖象,由圖象得函數(shù)在區(qū)間上的上的單調(diào)
10分
如果為真,為假,則C的取值范圍為。 12分
19、解:本小題主要考查正弦定理、余弦定理等基礎(chǔ)知識,同時考查利用三角公式進行恒等變形的技能和運算能力.
設(shè)E為BC的中點,連接DE,則DE//AB,且DE= 2分
在△BDE中利用余弦定理可得:
BD2=BE2+ED2-2BE?ED?cos∠BED,
6分
12分
20、解:(Ⅰ)由已知得,,……………………1分
故.……………………………………4分
(Ⅱ)由(Ⅰ)得,,……………………………………………5分
再由已知得,等比數(shù)列的公比,………6分
……………………………………8分
(III)由(Ⅰ)得.………………………………9分
假設(shè)數(shù)列中存在相鄰三項成等比數(shù)列,
則,即.…………10分
推出矛盾.所以數(shù)列中任意不同的三項都不可能成等比數(shù)列.12分
21、解:對函數(shù)求導(dǎo),得
令解得 或 2分
當變化時,、的變化情況如下表:
x
0
0
ㄋ
ㄊ
4分
所以,當時,是減函數(shù);當時,是增函數(shù);
當時,的值域為。 6分
(Ⅱ)對函數(shù)求導(dǎo),得
因此,當時,
因此當時,為減函數(shù), 7分
解式得 或解式得 又,
故:的取值范圍為。 12分
22、(本小題滿分14分).
解: (Ⅰ)函數(shù)的定義域是, …………2分
當時,∵ ∴ 即
這說明函數(shù)在區(qū)間上是減函數(shù) ……………4分
當時, …………5分
當時, ∵ ∴ 即
這說明函數(shù)在區(qū)間上是增函數(shù) ………………6分
故當時,取得最小值 ……7分
(Ⅱ)由(1)知,當時,……8分
而 ,,因此
∴ ① …12分
又
∴ ② …13分
綜合①、②得 成立 …14分
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com