總存在.使得成立.求的取值范圍 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)=,.

(Ⅰ)求函數(shù)在區(qū)間上的值域;

(Ⅱ)是否存在實數(shù),對任意給定的,在區(qū)間上都存在兩個不同的,使得成立.若存在,求出的取值范圍;若不存在,請說明理由;

(Ⅲ)給出如下定義:對于函數(shù)圖象上任意不同的兩點,如果對于函數(shù)圖象上的點(其中總能使得成立,則稱函數(shù)具備性質(zhì)“”,試判斷函數(shù)是不是具備性質(zhì)“”,并說明理由.

查看答案和解析>>

(1)已知:,求函數(shù)f(x)的單調(diào)區(qū)間和值域;

(2)a≥1,函數(shù)g(x)=x3-3a2x-2a,x∈[0,1],判斷函數(shù)g(x)的單調(diào)性并予以證明;

(3)當a≥1時,上述(1)、(2)小題中的函數(shù)f(x)、g(x),若對任意x1∈[0,1],總存在x2∈[0,1],使得g(x2)=f(x1)成立,求a的取值范圍.

查看答案和解析>>

(1)已知:數(shù)學(xué)公式,求函數(shù)f(x)的單調(diào)區(qū)間和值域;
(2)a≥1,函數(shù)g(x)=x3-3a2x-2a,x∈[0,1],判斷函數(shù)g(x)的單調(diào)性并予以證明;
(3)當a≥1時,上述(1)、(2)小題中的函數(shù)f(x)、g(x),若對任意x1∈[0,1],總存在x2∈[0,1],使得g(x2)=f(x1)成立,求a的取值范圍.

查看答案和解析>>

(1)已知:,求函數(shù)f(x)的單調(diào)區(qū)間和值域;
(2)a≥1,函數(shù)g(x)=x3-3a2x-2a,x∈[0,1],判斷函數(shù)g(x)的單調(diào)性并予以證明;
(3)當a≥1時,上述(1)、(2)小題中的函數(shù)f(x)、g(x),若對任意x1∈[0,1],總存在x2∈[0,1],使得g(x2)=f(x1)成立,求a的取值范圍.

查看答案和解析>>

(1)已知:,求函數(shù)f(x)的單調(diào)區(qū)間和值域;
(2)a≥1,函數(shù)g(x)=x3-3a2x-2a,x∈[0,1],判斷函數(shù)g(x)的單調(diào)性并予以證明;
(3)當a≥1時,上述(1)、(2)小題中的函數(shù)f(x)、g(x),若對任意x1∈[0,1],總存在x2∈[0,1],使得g(x2)=f(x1)成立,求a的取值范圍.

查看答案和解析>>

一、選擇題:

  CCBCD   CCBCA   DD

二、填空題:

13、    14、    15、-6    16、

三、解答題:

17.解:(Ⅰ)

                            2分

=1+                 4分

∴最小正周期是,最小值為.                     6分

(Ⅱ)解法一:因為,

                             8分

得函數(shù)在上的單調(diào)增區(qū)間為。               12分

解法二:作函數(shù)圖象,由圖象得函數(shù)在區(qū)間上的上的單調(diào)

          10分

如果為真,為假,則C的取值范圍為。 12分

 

19、解:本小題主要考查正弦定理、余弦定理等基礎(chǔ)知識,同時考查利用三角公式進行恒等變形的技能和運算能力.

設(shè)E為BC的中點,連接DE,則DE//AB,且DE= 2分

在△BDE中利用余弦定理可得:

BD2=BE2+ED2-2BE?ED?cos∠BED,

              6分

                12分

20、解:(Ⅰ)由已知得,,……………………1分

       故.……………………………………4分

(Ⅱ)由(Ⅰ)得,,……………………………………………5分

再由已知得,等比數(shù)列的公比,………6分

……………………………………8分

(III)由(Ⅰ)得.………………………………9分

       假設(shè)數(shù)列中存在相鄰三項成等比數(shù)列,

,即.…………10分

推出矛盾.所以數(shù)列中任意不同的三項都不可能成等比數(shù)列.12分

 

21、解:對函數(shù)求導(dǎo),得   

解得                       2分

變化時,的變化情況如下表:

x

0

 

0

 

  

4分

 所以,當時,是減函數(shù);當時,是增函數(shù);

           當時,的值域為。                 6分

(Ⅱ)對函數(shù)求導(dǎo),得

因此,當時,

因此當時,為減函數(shù),                          7分

式得 式得 ,

故:的取值范圍為。                              12分

 

22、(本小題滿分14分).

解: (Ⅰ)函數(shù)的定義域是…………2分

時,∵

這說明函數(shù)在區(qū)間上是減函數(shù)     ……………4分

時,                         …………5分

時,    ∵

   這說明函數(shù)在區(qū)間上是增函數(shù)       ………………6分

   故當時,取得最小值                       ……7分                 

(Ⅱ)由(1)知,當時,……8分

      而 ,,因此

 ∴  ①                  …12分

   ②              …13分

綜合①、②得  成立           …14分

 

 

 


同步練習冊答案