題目列表(包括答案和解析)
6、根據(jù)表格中的數(shù)據(jù),可以判定方程ex-x-2=0的一個根所在的區(qū)間為( 。
|
x | -1 | 0 | 1 | 2 | 3 |
ex | 0.37 | 1 | 2.72 | 7.39 | 20.08 |
x+2 | 1 | 2 | 3 | 4 | 5 |
x | -1 | 0 | 1 | 2 | 3 |
ex | 0.37 | 1 | 2.72 | 7.39 | 20.09 |
x+2 | 1 | 2 | 3 | 4 | 5 |
根據(jù)表格中的數(shù)據(jù),可以判定方程的一個零點所在的區(qū)間為,則k的值為 。
x |
-1 |
0 |
1 |
2 |
3 |
ex |
0.37 |
1 |
2.72 |
7.39 |
20.09 |
x+2 |
1 |
2 |
3 |
4 |
5 |
根據(jù)表格中的數(shù)據(jù),可以判定方程的一個根所在的區(qū)間為( )
-1 |
0 |
1 |
2 |
3 |
|
0.37 |
1 |
2.72 |
7.39 |
20.09 |
|
1 |
2 |
3 |
4 |
5 |
A.(-1,0) B.(0,1) C.(1,2) D.(2,3)
一、選擇題:
CCBCD CCBCA DD
二、填空題:
13、 14、 15、-6 16、
三、解答題:
17.解:(Ⅰ)
∵ 2分
=1+ 4分
∴最小正周期是,最小值為. 6分
(Ⅱ)解法一:因為,
令 8分
得函數(shù)在上的單調(diào)增區(qū)間為。 12分
解法二:作函數(shù)圖象,由圖象得函數(shù)在區(qū)間上的上的單調(diào)
10分
如果為真,為假,則C的取值范圍為。 12分
19、解:本小題主要考查正弦定理、余弦定理等基礎(chǔ)知識,同時考查利用三角公式進(jìn)行恒等變形的技能和運算能力.
設(shè)E為BC的中點,連接DE,則DE//AB,且DE= 2分
在△BDE中利用余弦定理可得:
BD2=BE2+ED2-2BE?ED?cos∠BED,
6分
12分
20、解:(Ⅰ)由已知得,,……………………1分
故.……………………………………4分
(Ⅱ)由(Ⅰ)得,,……………………………………………5分
再由已知得,等比數(shù)列的公比,………6分
……………………………………8分
(III)由(Ⅰ)得.………………………………9分
假設(shè)數(shù)列中存在相鄰三項成等比數(shù)列,
則,即.…………10分
推出矛盾.所以數(shù)列中任意不同的三項都不可能成等比數(shù)列.12分
21、解:對函數(shù)求導(dǎo),得
令解得 或 2分
當(dāng)變化時,、的變化情況如下表:
x
0
0
ㄋ
ㄊ
4分
所以,當(dāng)時,是減函數(shù);當(dāng)時,是增函數(shù);
當(dāng)時,的值域為。 6分
(Ⅱ)對函數(shù)求導(dǎo),得
因此,當(dāng)時,
因此當(dāng)時,為減函數(shù), 7分
解式得 或解式得 又,
故:的取值范圍為。 12分
22、(本小題滿分14分).
解: (Ⅰ)函數(shù)的定義域是, …………2分
當(dāng)時,∵ ∴ 即
這說明函數(shù)在區(qū)間上是減函數(shù) ……………4分
當(dāng)時, …………5分
當(dāng)時, ∵ ∴ 即
這說明函數(shù)在區(qū)間上是增函數(shù) ………………6分
故當(dāng)時,取得最小值 ……7分
(Ⅱ)由(1)知,當(dāng)時,……8分
而 ,,因此
∴ ① …12分
又
∴ ② …13分
綜合①、②得 成立 …14分
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com