由于對任意的x都成立.∴ a=-2. 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)y=f(x)對于任意(k∈Z),都有式子f(a-tanθ)=cotθ-1成立(其中a為常數(shù)).

(Ⅰ)求函數(shù)y=f(x)的解析式;

(Ⅱ)利用函數(shù)y=f(x)構(gòu)造一個數(shù)列,方法如下:

對于給定的定義域中的x1,令x2=f(x1),x3=f(x2),…,xn=f(xn-1),…在上述構(gòu)造過程中,如果xi(i=1,2,3,…)在定義域中,那么構(gòu)造數(shù)列的過程繼續(xù)下去;如果xi不在定義域中,那么構(gòu)造數(shù)列的過程就停止.

(ⅰ)如果可以用上述方法構(gòu)造出一個常數(shù)列,求a的取值范圍;

(ⅱ)是否存在一個實數(shù)a,使得取定義域中的任一值作為x1,都可用上述方法構(gòu)造出一個無窮數(shù)列{xn}?若存在,求出a的值;若不存在,請說明理由;

(ⅲ)當(dāng)a=1時,若x1=-1,求數(shù)列{xn}的通項公式.

查看答案和解析>>

已知f(x)是定義在R上的不恒為零的函數(shù),且對于任意的a、bR都滿足f(a·b)=af(b)+bf(a).

(1)求f(0),f(1)的值;

(2)判斷f(x)的奇偶性,并證明你的結(jié)論;

(3)若Sn表示數(shù)列{bn}的前n項和.試問:是否存在關(guān)于n的整式g(n),使得S1S2S3+…+Sn-1=(Sn-1)·g(n)對于一切不小于2的自然數(shù)n恒成立?若存在,寫出g(n)的解析式,并加以證明;若不存在,試說明理由.

查看答案和解析>>

定義在D上的函數(shù)f(x),如果滿足:對于任意x∈D,存在常數(shù)M>0,都有|f(x)|≤M成立,則稱f(x)是D上的有界函數(shù),其中M稱為函數(shù)f(x)的上界.已知函數(shù)f(x)=1+a·()x+()x;

(1)當(dāng)a=1時,求函數(shù)f(x)在(-∞,0)上的值域.并判斷函數(shù)f(x)在(-∞,0)上是否為有界函數(shù),請說明理由;

(2)若函數(shù)f(x)在[0,+∞)上是以3為上界的有界函數(shù),求實數(shù)a的取值范圍.

(3)試定義函數(shù)的下界,舉一個下界為3的函數(shù)模型,并進行證明.

查看答案和解析>>

已知函數(shù)f(x)=ax-lnx+1(a∈R),g(x)=xe1-x

(Ⅰ)求函數(shù)g(x)在區(qū)間(0,e]上的值域;

(Ⅱ)是否存在實數(shù)a,對任意給定的x0∈(0,e],在區(qū)間[1,e]上都存在兩個不同的xi(i=1,2),使得f(xi)=g(x0)成立.若存在,求出a的取值范圍;若不存在,請說明理由;

(Ⅲ)給出如下定義:對于函數(shù)y=F(x)圖象上任意不同的兩點A(x1,y1),B(x2,my2),如果對于函數(shù)y=F(x)圖象上的點M(x0,y0)(其中總能使得F(x1)-f(x2)=(x0)(x1-x2)成立,則稱函數(shù)具備性質(zhì)“L”,試判斷函數(shù)f(x)是不是具備性質(zhì)“L”,并說明理由.

查看答案和解析>>

已知函數(shù)f(x)=alnx-x2+1.

(1)若曲線y=f(x)在x=1處的切線方程為4x-y+b=0,求實數(shù)a和b的值;

(2)若a<0,且對任意x1、x2∈(0,+∞),都|f(x1)-f(x2)|≥|x1-x2|,求a的取值范圍.

【解析】第一問中利用f′(x)=-2x(x>0),f′(1)=a-2,又f(1)=0,所以曲線y=f(x)在x=1處的切線方程為y=(a-2)(x-1),即(a-2)x-y+2-a=0,

由已知得a-2=4,2-a=b,所以a=6,b=-4.

第二問中,利用當(dāng)a<0時,f′(x)<0,∴f(x)在(0,+∞)上是減函數(shù),

不妨設(shè)0<x1≤x2,則|f(x1)-f(x2)|=f(x1)-f(x2),|x1-x2|=x2-x1,

∴|f(x1)-f(x2)|≥|x1-x2|等價于f(x1)-f(x2)≥x2-x1,

即f(x1)+x1≥f(x2)+x2,結(jié)合構(gòu)造函數(shù)和導(dǎo)數(shù)的知識來解得。

(1)f′(x)=-2x(x>0),f′(1)=a-2,又f(1)=0,所以曲線y=f(x)在x=1處的切線方程為y=(a-2)(x-1),即(a-2)x-y+2-a=0,

由已知得a-2=4,2-a=b,所以a=6,b=-4.

(2)當(dāng)a<0時,f′(x)<0,∴f(x)在(0,+∞)上是減函數(shù),

不妨設(shè)0<x1≤x2,則|f(x1)-f(x2)|=f(x1)-f(x2),|x1-x2|=x2-x1,

∴|f(x1)-f(x2)|≥|x1-x2|等價于f(x1)-f(x2)≥x2-x1,即f(x1)+x1≥f(x2)+x2,

令g(x)=f(x)+x=alnx-x2+x+1,g(x)在(0,+∞)上是減函數(shù),

∵g′(x)=-2x+1=(x>0),

∴-2x2+x+a≤0在x>0時恒成立,

∴1+8a≤0,a≤-,又a<0,

∴a的取值范圍是

 

查看答案和解析>>


同步練習(xí)冊答案