[備考提示]要熟練掌握導(dǎo)數(shù)的三大應(yīng)用:①求斜率:在曲線的某點有切線.則求導(dǎo)后把橫坐標(biāo)代進(jìn)去.則為其切線的斜率,②有關(guān)極值:就是某處有極值.則把它代入其導(dǎo)數(shù).則為,③單調(diào)性的判斷: .單調(diào)遞增,.單調(diào)遞減.和一些常見的導(dǎo)數(shù)的求法. 要熟練一些函數(shù)的單調(diào)性的判斷方法有.作差法.作商法.導(dǎo)數(shù)法,對于含參范圍問題.解決方法有.當(dāng)參數(shù)為一次時.可直接解出通過均值不等式求最值把其求出,當(dāng)為二次時.可用判別式法或?qū)?shù)法等求.而此種題型函數(shù)與方程仍是高考的必考.以函數(shù)為背景.導(dǎo)數(shù)為工具.以分析.探求.轉(zhuǎn)化函數(shù)的有關(guān)性質(zhì)為設(shè)問方式.重點考查函數(shù)的基本性質(zhì).導(dǎo)數(shù)的應(yīng)用.以及函數(shù)與方程.分類與整合等數(shù)學(xué)思想.其中試題靈活多變. 查看更多

 

題目列表(包括答案和解析)

(本小題滿分12分)

已知函數(shù);

(1)求;         (2)求的最大值與最小值.

【解析】第一問利用導(dǎo)數(shù)的運算法則,冪函數(shù)的導(dǎo)數(shù)公式,可得。

第二問中,利用第一問的導(dǎo)數(shù),令導(dǎo)數(shù)為零,得到

然后結(jié)合導(dǎo)數(shù),函數(shù)的關(guān)系判定函數(shù)的單調(diào)性,求解最值即可。

 

查看答案和解析>>

已知曲線相交于點A,

(1)求A點坐標(biāo);

(2)分別求它們在A點處的切線方程(寫成直線的一般式方程);

(3)求由曲線在A點處的切線及以及軸所圍成的圖形面積。(畫出草圖)

【解析】本試題主要考察了導(dǎo)數(shù)的幾何意義的運用,以及利用定積分求解曲邊梯形的面積的綜合試題。先確定切點,然后求解斜率,最后得到切線方程。而求解面積,要先求解交點,確定上限和下限,然后借助于微積分基本定理得到。

 

查看答案和解析>>

已知曲線相交于點A,

(1)求A點坐標(biāo);

(2)分別求它們在A點處的切線方程(寫成直線的一般式方程);

(3)求由曲線在A點處的切線及以及軸所圍成的圖形面積。(畫出草圖)

【解析】本試題主要考察了導(dǎo)數(shù)的幾何意義的運用,以及利用定積分求解曲邊梯形的面積的綜合試題。先確定切點,然后求解斜率,最后得到切線方程。而求解面積,要先求解交點,確定上限和下限,然后借助于微積分基本定理得到。

 

查看答案和解析>>

已知拋物線C:與圓有一個公共點A,且在A處兩曲線的切線與同一直線l

(I)     求r;

(II)   設(shè)m、n是異于l且與C及M都相切的兩條直線,m、n的交點為D,求D到l的距離。

【解析】本試題考查了拋物線與圓的方程,以及兩個曲線的公共點處的切線的運用,并在此基礎(chǔ)上求解點到直線的距離。

【點評】該試題出題的角度不同于平常,因為涉及的是兩個二次曲線的交點問題,并且要研究兩曲線在公共點出的切線,把解析幾何和導(dǎo)數(shù)的工具性結(jié)合起來,是該試題的創(chuàng)新處。另外對于在第二問中更是難度加大了,出現(xiàn)了另外的兩條公共的切線,這樣的問題對于我們以后的學(xué)習(xí)也是一個需要練習(xí)的方向。

 

 

查看答案和解析>>

已知函數(shù)

(I)     討論f(x)的單調(diào)性;

(II)   設(shè)f(x)有兩個極值點若過兩點的直線I與x軸的交點在曲線上,求α的值。

【解析】本試題考查了導(dǎo)數(shù)在研究函數(shù)中的運用。第一就是三次函數(shù),通過求解導(dǎo)數(shù),求解單調(diào)區(qū)間。另外就是運用極值的概念,求解參數(shù)值的運用。

【點評】試題分為兩問,題面比較簡單,給出的函數(shù)比較常規(guī),,這一點對于同學(xué)們來說沒有難度但是解決的關(guān)鍵還是要看導(dǎo)數(shù)的符號的實質(zhì)不變,求解單調(diào)區(qū)間。第二問中,運用極值的問題,和直線方程的知識求解交點,得到參數(shù)的值。

(1)

 

查看答案和解析>>


同步練習(xí)冊答案