解:.離心率.所以 查看更多

 

題目列表(包括答案和解析)

已知,是橢圓左右焦點(diǎn),它的離心率,且被直線(xiàn)所截得的線(xiàn)段的中點(diǎn)的橫坐標(biāo)為

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)設(shè)是其橢圓上的任意一點(diǎn),當(dāng)為鈍角時(shí),求的取值范圍。

【解析】解:因?yàn)榈谝粏?wèn)中,利用橢圓的性質(zhì)由   所以橢圓方程可設(shè)為:,然后利用

    

      橢圓方程為

第二問(wèn)中,當(dāng)為鈍角時(shí),,    得

所以    得

解:(Ⅰ)由   所以橢圓方程可設(shè)為:

                                       3分

    

      橢圓方程為             3分

(Ⅱ)當(dāng)為鈍角時(shí),,    得   3分

所以    得

 

查看答案和解析>>

已知中心在原點(diǎn),焦點(diǎn)在軸上的橢圓的離心率為,且經(jīng)過(guò)點(diǎn).

(Ⅰ)求橢圓的方程;

(Ⅱ)是否存過(guò)點(diǎn)(2,1)的直線(xiàn)與橢圓相交于不同的兩點(diǎn),滿(mǎn)足?若存在,求出直線(xiàn)的方程;若不存在,請(qǐng)說(shuō)明理由.

【解析】第一問(wèn)利用設(shè)橢圓的方程為,由題意得

解得

第二問(wèn)若存在直線(xiàn)滿(mǎn)足條件的方程為,代入橢圓的方程得

因?yàn)橹本(xiàn)與橢圓相交于不同的兩點(diǎn),設(shè)兩點(diǎn)的坐標(biāo)分別為

所以

所以.解得。

解:⑴設(shè)橢圓的方程為,由題意得

解得,故橢圓的方程為.……………………4分

⑵若存在直線(xiàn)滿(mǎn)足條件的方程為,代入橢圓的方程得

因?yàn)橹本(xiàn)與橢圓相交于不同的兩點(diǎn),設(shè)兩點(diǎn)的坐標(biāo)分別為

所以

所以

,

因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912284792138316/SYS201207091229220620471975_ST.files/image009.png">,即

所以

所以,解得

因?yàn)锳,B為不同的兩點(diǎn),所以k=1/2.

于是存在直線(xiàn)L1滿(mǎn)足條件,其方程為y=1/2x

 

查看答案和解析>>

給定下列結(jié)論:

①在區(qū)間內(nèi)隨機(jī)地抽取兩數(shù)則滿(mǎn)足概率是;

②已知直線(xiàn)l1,l2:x- by + 1= 0,則的充要條件是;

③為了解一片經(jīng)濟(jì)林的生長(zhǎng)情況,隨機(jī)測(cè)量了其中100株樹(shù)木的底部周長(zhǎng)(單位:cm)。根據(jù)所得數(shù)據(jù)畫(huà)出樣本的頻率分布直方圖(如下),那么在這100株樹(shù)木中,底部周長(zhǎng)小于110cm的株數(shù)是70株;

④極坐標(biāo)系內(nèi)曲線(xiàn)的中心與點(diǎn)的距離為

以上結(jié)論中正確的是_____________________(用序號(hào)作答)

 

查看答案和解析>>

設(shè)橢圓的左、右頂點(diǎn)分別為,點(diǎn)在橢圓上且異于兩點(diǎn),為坐標(biāo)原點(diǎn).

(Ⅰ)若直線(xiàn)的斜率之積為,求橢圓的離心率;

(Ⅱ)若,證明直線(xiàn)的斜率 滿(mǎn)足

【解析】(1)解:設(shè)點(diǎn)P的坐標(biāo)為.由題意,有  ①

,得,

,可得,代入①并整理得

由于,故.于是,所以橢圓的離心率

(2)證明:(方法一)

依題意,直線(xiàn)OP的方程為,設(shè)點(diǎn)P的坐標(biāo)為.

由條件得消去并整理得  ②

,,

.

整理得.而,于是,代入②,

整理得

,故,因此.

所以.

(方法二)

依題意,直線(xiàn)OP的方程為,設(shè)點(diǎn)P的坐標(biāo)為.

由P在橢圓上,有

因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012071821180638818491/SYS201207182118494193384555_ST.files/image036.png">,,所以,即   ③

,,得整理得.

于是,代入③,

整理得

解得,

所以.

 

查看答案和解析>>

如圖,分別是橢圓+=1()的左、右焦點(diǎn),是橢圓的頂點(diǎn),是直線(xiàn)與橢圓的另一個(gè)交點(diǎn),=60°.

(Ⅰ)求橢圓的離心率;

(Ⅱ)已知△的面積為40,求的值.

【解析】 (Ⅰ)由題=60°,則,即橢圓的離心率為。

(Ⅱ)因△的面積為40,設(shè),又面積公式,又直線(xiàn)

又由(Ⅰ)知,聯(lián)立方程可得,整理得,解得,,所以,解得。

 

查看答案和解析>>


同步練習(xí)冊(cè)答案