∴當時..當時.,故選C,[高考考點]三角函數(shù)值域及二次函數(shù)值域[易錯點]:忽視正弦函數(shù)的范圍而出錯.[備考提示]:高考對三角函數(shù)的考查一直以中檔題為主.只要認真運算即可. 查看更多

 

題目列表(包括答案和解析)

函數(shù)有意義,需使高考資源網(wǎng)( www.ks5u.com),中國最大的高考網(wǎng)站,您身邊的高考專家。,其定義域為高考資源網(wǎng)( www.ks5u.com),中國最大的高考網(wǎng)站,您身邊的高考專家。,排除C,D,又因為高考資源網(wǎng)( www.ks5u.com),中國最大的高考網(wǎng)站,您身邊的高考專家。,所以當高考資源網(wǎng)( www.ks5u.com),中國最大的高考網(wǎng)站,您身邊的高考專家。時函數(shù)為減函數(shù),故選A. w.w.w.k.s.5.u.c.o.m    

答案:A.

【命題立意】:本題考查了函數(shù)的圖象以及函數(shù)的定義域、值域、單調(diào)性等性質(zhì).本題的難點在于給出的函數(shù)比較復雜,需要對其先變形,再在定義域內(nèi)對其進行考察其余的性質(zhì).

查看答案和解析>>

設(shè)點是拋物線的焦點,是拋物線上的個不同的點().

(1) 當時,試寫出拋物線上的三個定點、、的坐標,從而使得

;

(2)當時,若

求證:;

(3) 當時,某同學對(2)的逆命題,即:

“若,則.”

開展了研究并發(fā)現(xiàn)其為假命題.

請你就此從以下三個研究方向中任選一個開展研究:

① 試構(gòu)造一個說明該逆命題確實是假命題的反例(本研究方向最高得4分);

② 對任意給定的大于3的正整數(shù),試構(gòu)造該假命題反例的一般形式,并說明你的理由(本研究方向最高得8分);

③ 如果補充一個條件后能使該逆命題為真,請寫出你認為需要補充的一個條件,并說明加上該條件后,能使該逆命題為真命題的理由(本研究方向最高得10分).

【評分說明】本小題若填空不止一個研究方向,則以實得分最高的一個研究方向的得分作為本小題的最終得分.

【解析】第一問利用拋物線的焦點為,設(shè)

分別過作拋物線的準線的垂線,垂足分別為.

由拋物線定義得到

第二問設(shè),分別過作拋物線的準線垂線,垂足分別為.

由拋物線定義得

第三問中①取時,拋物線的焦點為,

設(shè)分別過作拋物線的準線垂線,垂足分別為.由拋物線定義得

,

,不妨取;;

解:(1)拋物線的焦點為,設(shè),

分別過作拋物線的準線的垂線,垂足分別為.由拋物線定義得

 

因為,所以,

故可取滿足條件.

(2)設(shè),分別過作拋物線的準線垂線,垂足分別為.

由拋物線定義得

   又因為

;

所以.

(3) ①取時,拋物線的焦點為

設(shè),分別過作拋物線的準線垂線,垂足分別為.由拋物線定義得

,

,不妨取;;;

,

.

,是一個當時,該逆命題的一個反例.(反例不唯一)

② 設(shè),分別過

拋物線的準線的垂線,垂足分別為,

及拋物線的定義得

,即.

因為上述表達式與點的縱坐標無關(guān),所以只要將這點都取在軸的上方,則它們的縱坐標都大于零,則

,所以.

(說明:本質(zhì)上只需構(gòu)造滿足條件且的一組個不同的點,均為反例.)

③ 補充條件1:“點的縱坐標)滿足 ”,即:

“當時,若,且點的縱坐標)滿足,則”.此命題為真.事實上,設(shè),

分別過作拋物線準線的垂線,垂足分別為,由,

及拋物線的定義得,即,則

,

又由,所以,故命題為真.

補充條件2:“點與點為偶數(shù),關(guān)于軸對稱”,即:

“當時,若,且點與點為偶數(shù),關(guān)于軸對稱,則”.此命題為真.(證略)

 

查看答案和解析>>

已知數(shù)列的前項和為,且 (N*),其中

(Ⅰ) 求的通項公式;

(Ⅱ) 設(shè) (N*).

①證明: ;

② 求證:.

【解析】本試題主要考查了數(shù)列的通項公式的求解和運用。運用關(guān)系式,表示通項公式,然后得到第一問,第二問中利用放縮法得到,②由于,

所以利用放縮法,從此得到結(jié)論。

解:(Ⅰ)當時,由.  ……2分

若存在,

從而有,與矛盾,所以.

從而由.  ……6分

 (Ⅱ)①證明:

證法一:∵

 

.…………10分

證法二:,下同證法一.           ……10分

證法三:(利用對偶式)設(shè),

.又,也即,所以,也即,又因為,所以.即

                    ………10分

證法四:(數(shù)學歸納法)①當時, ,命題成立;

   ②假設(shè)時,命題成立,即,

   則當時,

    即

故當時,命題成立.

綜上可知,對一切非零自然數(shù),不等式②成立.           ………………10分

②由于

所以,

從而.

也即

 

查看答案和解析>>

【解析】D.當時,顯然;當時, ,所以選D.

查看答案和解析>>

已知函數(shù).(

(1)若在區(qū)間上單調(diào)遞增,求實數(shù)的取值范圍;

(2)若在區(qū)間上,函數(shù)的圖象恒在曲線下方,求的取值范圍.

【解析】第一問中,首先利用在區(qū)間上單調(diào)遞增,則在區(qū)間上恒成立,然后分離參數(shù)法得到,進而得到范圍;第二問中,在區(qū)間上,函數(shù)的圖象恒在曲線下方等價于在區(qū)間上恒成立.然后求解得到。

解:(1)在區(qū)間上單調(diào)遞增,

在區(qū)間上恒成立.  …………3分

,而當時,,故. …………5分

所以.                 …………6分

(2)令,定義域為

在區(qū)間上,函數(shù)的圖象恒在曲線下方等價于在區(qū)間上恒成立.   

        …………9分

① 若,令,得極值點,

,即時,在(,+∞)上有,此時在區(qū)間上是增函數(shù),并且在該區(qū)間上有,不合題意;

,即時,同理可知,在區(qū)間上遞增,

,也不合題意;                     …………11分

② 若,則有,此時在區(qū)間上恒有,從而在區(qū)間上是減函數(shù);

要使在此區(qū)間上恒成立,只須滿足

由此求得的范圍是.        …………13分

綜合①②可知,當時,函數(shù)的圖象恒在直線下方.

 

查看答案和解析>>


同步練習冊答案