題目列表(包括答案和解析)
把函數(shù)的圖象按向量平移得到函數(shù)的圖象.
(1)求函數(shù)的解析式; (2)若,證明:.
【解析】本試題主要考查了函數(shù) 平抑變換和運用函數(shù)思想證明不等式。第一問中,利用設上任意一點為(x,y)則平移前對應點是(x+1,y-2)代入 ,便可以得到結(jié)論。第二問中,令,然后求導,利用最小值大于零得到。
(1)解:設上任意一點為(x,y)則平移前對應點是(x+1,y-2)代入 得y-2=ln(x+1)-2即y=ln(x+1),所以.……4分
(2) 證明:令,……6分
則……8分
,∴,∴在上單調(diào)遞增.……10分
故,即
已知函數(shù) R).
(Ⅰ)若 ,求曲線 在點 處的的切線方程;
(Ⅱ)若 對任意 恒成立,求實數(shù)a的取值范圍.
【解析】本試題主要考查了導數(shù)在研究函數(shù)中的運用。
第一問中,利用當時,.
因為切點為(), 則,
所以在點()處的曲線的切線方程為:
第二問中,由題意得,即即可。
Ⅰ)當時,.
,
因為切點為(), 則,
所以在點()處的曲線的切線方程為:. ……5分
(Ⅱ)解法一:由題意得,即. ……9分
(注:凡代入特殊值縮小范圍的均給4分)
,
因為,所以恒成立,
故在上單調(diào)遞增, ……12分
要使恒成立,則,解得.……15分
解法二: ……7分
(1)當時,在上恒成立,
故在上單調(diào)遞增,
即. ……10分
(2)當時,令,對稱軸,
則在上單調(diào)遞增,又
① 當,即時,在上恒成立,
所以在單調(diào)遞增,
即,不合題意,舍去
②當時,, 不合題意,舍去 14分
綜上所述:
已知函數(shù).
(1)求在區(qū)間上的最大值;
(2)若函數(shù)在區(qū)間上存在遞減區(qū)間,求實數(shù)m的取值范圍.
【解析】本試題主要考查了導數(shù)在研究函數(shù)中的運用,求解函數(shù)的最值。第一問中,利用導數(shù)求解函數(shù)的最值,首先求解導數(shù),然后利用極值和端點值比較大小,得到結(jié)論。第二問中,我們利用函數(shù)在上存在遞減區(qū)間,即在上有解,即,即可,可得到。
解:(1),
令,解得 ……………3分
,在上為增函數(shù),在上為減函數(shù),
. …………6分
(2)
在上存在遞減區(qū)間,在上有解,……9分
在上有解, ,
所以,實數(shù)的取值范圍為
已知函數(shù)的圖象過點(-1,-6),且函數(shù) 的圖象關(guān)于y軸對稱.
(1)求、的值及函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)在(-1,1)上單調(diào)遞減,求實數(shù)的取值范圍。
【解析】本試題主要考查了導數(shù)在函數(shù)研究中的應用。利用導數(shù)能求解函數(shù)的單調(diào)性和奇偶性問題,以及能根據(jù)函數(shù)單調(diào)區(qū)間,逆向求解參數(shù)的取值范圍的求解問題。要利用導數(shù)恒小于等于零來解得 。
已知函數(shù)的圖象過點(-1,-6),且函數(shù) 的圖象關(guān)于y軸對稱.
(1)求、的值及函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)在(-1,1)上單調(diào)遞減,求實數(shù)的取值范圍。
【解析】本試題主要考查了導數(shù)在函數(shù)研究中的應用。利用導數(shù)能求解函數(shù)的單調(diào)性和奇偶性問題,以及能根據(jù)函數(shù)單調(diào)區(qū)間,逆向求解參數(shù)的取值范圍的求解問題。要利用導數(shù)恒小于等于零來解得 。
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com