解:(1)由得可求得.┈3分 查看更多

 

題目列表(包括答案和解析)

為了解高中一年級學(xué)生身高情況,某校按10%的比例對全校700名高中一年級學(xué)生按性別進行抽樣檢查,測得身高頻數(shù)分布表如下表1、表2.

表1:男生身高頻數(shù)分布表

 

身高(cm)

[160,165)

[165,170)

[170,175)

[175,180)

[180,185)

[185,190)

頻數(shù)

2

5

14

13

4

2

 

表2:女生身高頻數(shù)分布表

 

身高(cm)

[150,155)

[155,160)

[160,165)

[165,170)

[170,175)

[175,180)

頻數(shù)

1

7

12

6

3

1

 

(I)求該校男生的人數(shù)并完成下面頻率分布直方圖;

(II)估計該校學(xué)生身高在的概率;

(III)從樣本中身高在180190cm之間的男生中任選2人,求至少有1人身高在185190cm之間的概率。

【解析】第一問樣本中男生人數(shù)為40 ,

由分層抽樣比例為10%可得全校男生人數(shù)為400

(2)中由表1、表2知,樣本中身高在的學(xué)生人數(shù)為:5+14+13+6+3+1=42,樣本容量為70 ,所以樣本中學(xué)生身高在的頻率 

故由估計該校學(xué)生身高在的概率 

(3)中樣本中身高在180185cm之間的男生有4人,設(shè)其編號為①②③④ 樣本中身高在185190cm之間的男生有2人,設(shè)其編號為⑤⑥從上述6人中任取2人的樹狀圖,故從樣本中身高在180190cm之間的男生中任選2人得所有可能結(jié)果數(shù)為15,求至少有1人身高在185190cm之間的可能結(jié)果數(shù)為9,因此,所求概率

由表1、表2知,樣本中身高在的學(xué)生人數(shù)為:5+14+13+6+3+1=42,樣本容量為70 ,所以樣本中學(xué)生身高在

的頻率-----------------------------------------6分

故由估計該校學(xué)生身高在的概率.--------------------8分

(3)樣本中身高在180185cm之間的男生有4人,設(shè)其編號為①②③④ 樣本中身高在185190cm之間的男生有2人,設(shè)其編號為⑤⑥從上述6人中任取2人的樹狀圖為:

--10分

故從樣本中身高在180190cm之間的男生中任選2人得所有可能結(jié)果數(shù)為15,求至少有1人身高在185190cm之間的可能結(jié)果數(shù)為9,因此,所求概率

 

查看答案和解析>>

解:因為有負根,所以在y軸左側(cè)有交點,因此

解:因為函數(shù)沒有零點,所以方程無根,則函數(shù)y=x+|x-c|與y=2沒有交點,由圖可知c>2


 13.證明:(1)令x=y=1,由已知可得f(1)=f(1×1)=f(1)f(1),所以f(1)=1或f(1)=0

若f(1)=0,f(0)=f(1×0)=f(1)f(0)=0,所以f(1)=f(0)與已知條件“”矛盾所以f(1)≠0,因此f(1)=1,所以f(1)-1=0,1是函數(shù)y=f(x)-1的零點

(2)因為f(1)=f[(-1)×(-1)]=f2(-1)=,所以f(-1)=±1,但若f(-1)=1,則f(-1)=f(1)與已知矛盾所以f(-1)不能等于1,只能等于-1。所以任x∈R,f(-x)=f(-1)f(x)=-f(x),因此函數(shù)是奇函數(shù)

數(shù)字1,2,3,4恰好排成一排,如果數(shù)字i(i=1,2,3,4)恰好出現(xiàn)在第i個位置上則稱有一個巧合,求巧合數(shù)的分布列。

查看答案和解析>>

(本題16分)已知函數(shù),其中e是自然數(shù)的底數(shù),,

(1)當時,解不等式

(2)若當時,不等式恒成立,求a的取值范圍;

(3)當時,試判斷:是否存在整數(shù)k,使得方程

   上有解?若存在,請寫出所有可能的k的值;若不存在,說明理由。

 

查看答案和解析>>

(本題16分)已知函數(shù),其中e是自然數(shù)的底數(shù),
(1)當時,解不等式
(2)若當時,不等式恒成立,求a的取值范圍;
(3)當時,試判斷:是否存在整數(shù)k,使得方程
上有解?若存在,請寫出所有可能的k的值;若不存在,說明理由。

查看答案和解析>>

如圖所示的長方體中,底面是邊長為的正方形,的交點,,是線段的中點.

(Ⅰ)求證:平面;

(Ⅱ)求證:平面;

(Ⅲ)求二面角的大。

【解析】本試題主要考查了線面平行的判定定理和線面垂直的判定定理,以及二面角的求解的運用。中利用,又平面,平面,∴平面,,又,∴平面. 可得證明

(3)因為∴為面的法向量.∵,,

為平面的法向量.∴利用法向量的夾角公式,,

的夾角為,即二面角的大小為

方法一:解:(Ⅰ)建立如圖所示的空間直角坐標系.連接,則點、,

,又點,,∴

,且不共線,∴

平面,平面,∴平面.…………………4分

(Ⅱ)∵,

,即,

,∴平面.   ………8分

(Ⅲ)∵,,∴平面

為面的法向量.∵,,

為平面的法向量.∴,

的夾角為,即二面角的大小為

 

查看答案和解析>>


同步練習冊答案