7.設(shè)函數(shù) 查看更多

 

題目列表(包括答案和解析)

設(shè)函數(shù)f(x)=(x-a)(x-b)(x-c)(a、b、c是兩兩不等的常數(shù)),則
a
f′(a)
+
b
f′(b)
+
c
f′(c)
=
 

查看答案和解析>>

設(shè)函數(shù)f(x)=cos(2x+
π
3
)+sin2x.
(1)求函數(shù)f(x)的最大值和最小正周期.
(2)設(shè)A,B,C為△ABC的三個(gè)內(nèi)角,若cosB=
1
3
,f(
C
3
)=-
1
4
,且C為非鈍角,求sinA.

查看答案和解析>>

設(shè)函數(shù)f(x)=
ax2+bx+c
(a<0)
的定義域?yàn)镈,若所有點(diǎn)(s,f(t))(s,t∈D)構(gòu)成一個(gè)正方形區(qū)域,則a的值為( 。
A、-2B、-4
C、-8D、不能確定

查看答案和解析>>

設(shè)函數(shù)f(x)=sin(2x+φ)(-π<φ<0),y=f(x)圖象的一條對(duì)稱軸是直線x=
π
8

(1)求φ;
(2)若函數(shù)y=2f(x)+a,(a為常數(shù)a∈R)在x∈[
11π
24
,
4
]
上的最大值和最小值之和為1,求a的值.

查看答案和解析>>

設(shè)函數(shù)f(x)=
x-3,x≥10
f(x+5),x<10
,則f(5)=
 

查看答案和解析>>

 

一、選擇題:本大題共12個(gè)小題,每小題5分,共60分。

1―6BBCDBD  7―12CACAAC

二、填空題:本大題共4個(gè)小題,每小題4分,共16分。

13.0.8;(文)0.7

14.

15.;  (文)

16.①③

三、解答題:

17.解:(1)由

       得

      

       由正弦定得,得

      

       又B

      

       又

       又      6分

   (2)

       由已知

             9分

       當(dāng)

       因此,當(dāng)時(shí),

      

       當(dāng),

           12分

18.解:設(shè)“中三等獎(jiǎng)”為事件A,“中獎(jiǎng)”為事件B,

       從四個(gè)小球中有放回的取兩個(gè)共有(0,0),(0,1),(0,2),(0,3),(1,0),(1,1)

   (1,2),(1,3),(2,0),(2,1),(2,2),(2,3),(3,0),(3,1),(3,2),(3,3)16種不同的結(jié)果       3分

   (1)兩個(gè)小球號(hào)碼相加之和等于4的取法有3種:

   (1,3),(2,2),(3,1)

       兩個(gè)小球號(hào)相加之和等于3的取法有4種:

   (0,3),(1,2),(2,1),(3,0)   4分

       由互斥事件的加法公式得

      

       即中三等獎(jiǎng)的概率為    6分

   (2)兩個(gè)小球號(hào)碼相加之和等于3的取法有4種;

       兩個(gè)小球相加之和等于4的取法有3種;

       兩個(gè)小球號(hào)碼相加之和等于5的取法有2種:(2,3),(3,2)

       兩個(gè)小球號(hào)碼相加之和等于6的取法有1種:(3,3)   9分

       由互斥事件的加法公式得

      

19.解法一(1)過(guò)點(diǎn)E作EG交CF于G,

       連結(jié)DG,可得四邊形BCGE為矩形,

//

       所以AD=EG,從而四邊形ADGE為平行四邊形

       故AE//DG    4分

       因?yàn)?img src="http://pic.1010jiajiao.com/pic4/docfiles/down/test/down/2c9751a517b53bdf1bcd72912edcf2ae.zip/73789.files/image201.gif" >平面DCF, 平面DCF,

       所以AE//平面DCF   6分

            

             在

            

             M是AE中點(diǎn),

            

             由側(cè)視圖是矩形,俯視圖是直角梯形,

             得

             平面BCM

             又平面BCM。

      20.解:(1)當(dāng)時(shí),由已知得

            

             同理,可解得   4分

         (2)解法一:由題設(shè)

             當(dāng)

             代入上式,得     (*) 6分

             由(1)可得

             由(*)式可得

             由此猜想:   8分

             證明:①當(dāng)時(shí),結(jié)論成立。

             ②假設(shè)當(dāng)時(shí)結(jié)論成立,

             即

             那么,由(*)得

            

             所以當(dāng)時(shí)結(jié)論也成立,

             根據(jù)①和②可知,

             對(duì)所有正整數(shù)n都成立。

             因   12分

             解法二:由題設(shè)

             當(dāng)

             代入上式,得   6分

            

            

             -1的等差數(shù)列,

            

                12分

      21.解:(1)由橢圓C的離心率

             得,其中,

             橢圓C的左、右焦點(diǎn)分別為

             又點(diǎn)F2在線段PF1的中垂線上

            

             解得

                4分

         (2)由題意,知直線MN存在斜率,設(shè)其方程為

             由

             消去

             設(shè)

             則

             且   8分

             由已知,

             得

             化簡(jiǎn),得     10分

            

             整理得

      * 直線MN的方程為,     

             因此直線MN過(guò)定點(diǎn),該定點(diǎn)的坐標(biāo)為(2,0)    12分

      22.解:   2分

         (1)由已知,得上恒成立,

             即上恒成立

             又當(dāng)

                6分

         (2)當(dāng)時(shí),

             在(1,2)上恒成立,

             這時(shí)在[1,2]上為增函數(shù)

                8分

             當(dāng)

             在(1,2)上恒成立,

             這時(shí)在[1,2]上為減函數(shù)

            

             當(dāng)時(shí),

             令   10分

             又 

                 12分

             綜上,在[1,2]上的最小值為

             ①當(dāng)

             ②當(dāng)時(shí),

             ③當(dāng)   14分


      同步練習(xí)冊(cè)答案