(3)求證:對(duì)于任意的成立. 查看更多

 

題目列表(包括答案和解析)

對(duì)于任意的不超過數(shù)列的項(xiàng)數(shù)),若數(shù)列的前項(xiàng)和等于該數(shù)列的前項(xiàng)之積,則稱該數(shù)列為型數(shù)列。

(1)若數(shù)列是首項(xiàng)型數(shù)列,求的值;

(2)證明:任何項(xiàng)數(shù)不小于3的遞增的正整數(shù)列都不是型數(shù)列;

(3)若數(shù)列型數(shù)列,且試求的遞推關(guān)系,并證明對(duì)恒成立。

 

查看答案和解析>>

對(duì)于任意的不超過數(shù)列的項(xiàng)數(shù)),若數(shù)列的前項(xiàng)和等于該數(shù)列的前項(xiàng)之積,則稱該數(shù)列為型數(shù)列。
(1)若數(shù)列是首項(xiàng)型數(shù)列,求的值;
(2)證明:任何項(xiàng)數(shù)不小于3的遞增的正整數(shù)列都不是型數(shù)列;
(3)若數(shù)列型數(shù)列,且試求的遞推關(guān)系,并證明對(duì)恒成立。

查看答案和解析>>

對(duì)于任意的不超過數(shù)列的項(xiàng)數(shù)),若數(shù)列的前項(xiàng)和等于該數(shù)列的前項(xiàng)之積,則稱該數(shù)列為型數(shù)列。
(1)若數(shù)列是首項(xiàng)型數(shù)列,求的值;
(2)證明:任何項(xiàng)數(shù)不小于3的遞增的正整數(shù)列都不是型數(shù)列;
(3)若數(shù)列型數(shù)列,且試求的遞推關(guān)系,并證明對(duì)恒成立。

查看答案和解析>>

設(shè)二次函數(shù)對(duì)于任意實(shí)數(shù),恒成立。
(1)求證:b+c=-1;
(2)求證:c≥3;
(3)若函數(shù)的最大值為8,求b和c的值。

查看答案和解析>>

在數(shù)列中,,并且對(duì)于任意n,且,都有成立,令

   (I)求數(shù)列的通項(xiàng)公式;

   (Ⅱ)求數(shù)列的前n項(xiàng)和,并證明:

查看答案和解析>>

 

一、選擇題:本大題共12個(gè)小題,每小題5分,共60分。

1―6BBCDBD  7―12CACAAC

二、填空題:本大題共4個(gè)小題,每小題4分,共16分。

13.0.8;

14.

15.; 

16.①③

三、解答題:

17.解:(1)由,

       得

      

       由正弦定得,得

      

       又B

      

       又

       又      6分

   (2)

       由已知

             9分

       當(dāng)

       因此,當(dāng)時(shí),

      

       當(dāng),

           12分

18.解:(1)依題意,甲答對(duì)主式題數(shù)的可能取值為0,1,2,3,則

      

      

      

              4分

       的分布列為

      

0

1

2

3

P

       甲答對(duì)試題數(shù)的數(shù)學(xué)期望為

         6分

   (2)設(shè)甲、乙兩人考試合格的事件分別為A、B,則

      

          9分

       因?yàn)槭录嗀、B相互獨(dú)立,

* 甲、乙兩人考試均不合格的概率為

      

       *甲、乙兩人至少有一人考試合格的概率為

      

       答:甲、乙兩人于少有一人考試合格的概率為  12分

       另解:甲、乙兩人至少有一個(gè)考試合格的概率為

      

       答:甲、乙兩人于少有一人考試合格的概率為 

19.解法一(1)過點(diǎn)E作EG交CF于G,

        //

               所以AD=EG,從而四邊形ADGE為平行四邊形

               故AE//DG    4分

               因?yàn)?img src="http://pic.1010jiajiao.com/pic4/docfiles/down/test/down/2b5fe2bbed00a5459daa51ea5e469369.zip/73788.files/image232.gif" >平面DCF, 平面DCF,

               所以AE//平面DCF   6分

           (2)過點(diǎn)B作交FE的延長線于H,

               連結(jié)AH,BH。

               由平面,

                       所以為二面角A―EF―C的平面角

                      

                       又因?yàn)?img src="http://pic.1010jiajiao.com/pic4/docfiles/down/test/down/2b5fe2bbed00a5459daa51ea5e469369.zip/73788.files/image250.gif" >

                       所以CF=4,從而BE=CG=3。

                       于是    10分

                       在

                       則,

                       因?yàn)?img src="http://pic.1010jiajiao.com/pic4/docfiles/down/test/down/2b5fe2bbed00a5459daa51ea5e469369.zip/73788.files/image258.gif" >

                       解法二:(1)如圖,以點(diǎn)C為坐標(biāo)原點(diǎn),

                       建立空間直角坐標(biāo)系

                       設(shè)

                       則

                      

                       于是

                 

                 

                 

                 

                20.解:(1)當(dāng)時(shí),由已知得

                      

                       同理,可解得   4分

                   (2)解法一:由題設(shè)

                       當(dāng)

                       代入上式,得     (*) 6分

                       由(1)可得

                       由(*)式可得

                       由此猜想:   8分

                       證明:①當(dāng)時(shí),結(jié)論成立。

                       ②假設(shè)當(dāng)時(shí)結(jié)論成立,

                       即

                       那么,由(*)得

                      

                       所以當(dāng)時(shí)結(jié)論也成立,

                       根據(jù)①和②可知,

                       對(duì)所有正整數(shù)n都成立。

                       因   12分

                       解法二:由題設(shè)

                       當(dāng)

                       代入上式,得   6分

                      

                      

                       -1的等差數(shù)列,

                      

                          12分

                21.解:(1)由橢圓C的離心率

                       得,其中,

                       橢圓C的左、右焦點(diǎn)分別為

                       又點(diǎn)F2在線段PF1的中垂線上

                      

                       解得

                          4分

                   (2)由題意,知直線MN存在斜率,設(shè)其方程為

                       由

                       消去

                       設(shè)

                       則

                       且   8分

                       由已知,

                       得

                       化簡,得     10分

                      

                       整理得

                * 直線MN的方程為,     

                       因此直線MN過定點(diǎn),該定點(diǎn)的坐標(biāo)為(2,0)    12分

                22.解:   2分

                   (1)由已知,得上恒成立,

                       即上恒成立

                       又當(dāng)

                          4分

                   (2)當(dāng)時(shí),

                       在(1,2)上恒成立,

                       這時(shí)在[1,2]上為增函數(shù)

                        

                       當(dāng)

                       在(1,2)上恒成立,

                       這時(shí)在[1,2]上為減函數(shù)

                      

                       當(dāng)時(shí),

                       令 

                       又 

                           9分

                       綜上,在[1,2]上的最小值為

                       ①當(dāng)

                       ②當(dāng)時(shí),

                       ③當(dāng)   10分

                   (3)由(1),知函數(shù)上為增函數(shù),

                       當(dāng)

                      

                       即恒成立    12分

                      

                      

                      

                       恒成立    14分


                同步練習(xí)冊(cè)答案