(4)設(shè)二面角. 查看更多

 

題目列表(包括答案和解析)

設(shè)P(a,b)(b≠0)是平面直角坐標(biāo)系xOy中的點(diǎn),l是經(jīng)過原點(diǎn)與點(diǎn)(1,b)的直線,記Q是直線l與拋物線x2=2pyp≠0)的異于原點(diǎn)的交點(diǎn)

⑴.已知a=1,b=2,p=2,求點(diǎn)Q的坐標(biāo)。

⑵.已知點(diǎn)P(a,b)(ab≠0)在橢圓+y2=1上,p=,求證:點(diǎn)Q落在雙曲線4x2-4y2=1上。

⑶.已知動點(diǎn)P(a,b)滿足ab≠0,p=,若點(diǎn)Q始終落在一條關(guān)于x軸對稱的拋物線上,試問動點(diǎn)P的軌跡落在哪種二次曲線上,并說明理由。

查看答案和解析>>

設(shè)平面直角坐標(biāo)系中,設(shè)二次函數(shù)的圖象與坐標(biāo)軸有三個交點(diǎn),經(jīng)過這三個交點(diǎn)的圓記為C。

(1)求實數(shù)的取值范圍;

(2)求圓的方程;

(3)問圓是否經(jīng)過某定點(diǎn)(其坐標(biāo)與無關(guān))?請證明你的結(jié)論。

查看答案和解析>>

設(shè)復(fù)數(shù)滿足,且在復(fù)平面上對應(yīng)的點(diǎn)在第二、四象限的角平分線上,若,求的值。

查看答案和解析>>

設(shè)平面直角坐標(biāo)系中,設(shè)二次函數(shù)的圖象與坐標(biāo)軸有三個交點(diǎn),經(jīng)過這三個交點(diǎn)的圓記為C。

(1)求實數(shù)的取值范圍;

(2)求圓的方程;

(3)問圓是否經(jīng)過某定點(diǎn)(其坐標(biāo)與無關(guān))?請證明你的結(jié)論。

 

查看答案和解析>>

設(shè)P(a,b)(b≠0)是平面直角坐標(biāo)系xOy中的點(diǎn),l是經(jīng)過原點(diǎn)與點(diǎn)(1,b)的直線,記Q是直線l與拋物線x2=2py(p≠0)的異于原點(diǎn)的交點(diǎn),
(1)若a=1,b=2,p=2,求點(diǎn)Q的坐標(biāo);
(2)若點(diǎn)P(a,b)(ab≠0)在橢圓+y2=1上,p=,求證:點(diǎn)Q落在雙曲線4x2-4y2=1上;
(3)若動點(diǎn)P(a,b)滿足ab≠0,p=,若點(diǎn)Q始終落在一條關(guān)于x軸對稱的拋物線上,試問動點(diǎn)P的軌跡落在哪種二次曲線上,并說明理由。

查看答案和解析>>

一、選擇題:本大題共10個小題,每小題5分,共50分.

題號

1

2

3

4

5

6

7

8

9

10

答案

C

B

C

D

C

B

A

D

B

A

二、填空題:本大題共4個小題,每小題4分,共16分.

11.  630       12.  2k   13.             14.     

三、解答題:本大題共6個小題,每小題14分,共84分.

15.(4分)     

由題意得  

16. 有分布列:

0

1

2

3

P

從而期望

17.(1)

       又

        

   (2)

      

      

   (3)DE//AB,

   (4)設(shè)BB1的中點(diǎn)為F,連接EF、DF,則EF是DF在平面BB1C1C上的射影。

     因為BB1C1C是正方形,

   

18.(1) 由題意得  

(2)

所以直線的斜率為

,則直線的斜率,                                       

19.(1)由韋達(dá)定理得

是首項為4,公差為2的等差數(shù)列。

(2)由(1)知,則

原式左邊=

==右式。故原式成立。

 

20.令x=y=0,有,令y=-x則

故(1)得證。

。2)在R上任取x1,x2,且,

 

所以在R上單調(diào)遞增;

。3)

;

;因為,

所以無解,即圓心到直線的距離大于或等于半徑2,只需

 

 


同步練習(xí)冊答案