已知二次函數(shù)和一次函數(shù)其中且 查看更多

 

題目列表(包括答案和解析)

已知二次函數(shù)和一次函數(shù),且滿足,其中

(1)求證:

(2)求證:兩函數(shù)的圖象交于不同的兩點(diǎn)A,B;

(3)求線段AB在軸上的射影的長的取值范圍。

查看答案和解析>>

已知二次函數(shù)f(x)=ax2+bx+c和一次函數(shù)g(x)=-bx,其中a,b,c∈R.且滿足a>b>c,f(1)=0.
(Ⅰ)證明:當(dāng)a=3、b=2時(shí)函數(shù)f(x)與g(x)的圖象交于不同的兩點(diǎn)A,B.
(Ⅱ)若函數(shù)F(x)=f(x)-g(x)在[2,3]上的最小值是9,最大值為21,試求a,b的值.

查看答案和解析>>

已知二次函數(shù)f(x)的圖象過點(diǎn)(0,4),對任意x滿足f(3-x)=f(x),且有最小值是
74
.g(x)=2x+m.
(Ⅰ)求f(x)的解析式;
(Ⅱ) 求函數(shù)h(x)=f(x)-(2t-3)x在區(qū)間[0,1]上的最小值,其中t∈R;
(Ⅲ)設(shè)f(x)與g(x)是定義在同一區(qū)間[p,q]上的兩個(gè)函數(shù),若函數(shù)F(x)=f(x)-g(x)在x∈[p,q]上有兩個(gè)不同的零點(diǎn),則稱f(x)和g(x)在[p,q]上是“關(guān)聯(lián)函數(shù)”,區(qū)間[p,q]稱為“關(guān)聯(lián)區(qū)間”.若f(x)與g(x)在[0,3]上是“關(guān)聯(lián)函數(shù)”,求m的取值范圍.

查看答案和解析>>

已知二次函數(shù)f(x)=x2-mx+m(x∈R)同時(shí)滿足:(1)不等式f(x)≤0的解集有且只有一個(gè)元素;(2)在定義域內(nèi)存在0<x1<x2,使得不等式f(x1)>f(x2)成立.設(shè)數(shù)列{an}的前n項(xiàng)和Sn=f(n),bn=1-
8-man
,我們把所有滿足bi•bi+1<0的正整數(shù)i的個(gè)數(shù)叫做數(shù)列{bn}的異號數(shù).根據(jù)以上信息,給出下列五個(gè)命題:
①m=0;
②m=4;
③數(shù)列{an}的通項(xiàng)公式為an=2n-5;
④數(shù)列{bn}的異號數(shù)為2;
⑤數(shù)列{bn}的異號數(shù)為3.
其中正確命題的序號為
②⑤
②⑤
.(寫出所有正確命題的序號)

查看答案和解析>>

已知二次函數(shù)f(x)=ax2+bx+c和一次函數(shù)g(x)=-bx,其中a,b,c∈R且滿足a>b>c,f(1)=0.
(1)證明:函數(shù)f(x)與g(x)的圖象交于不同的兩點(diǎn)A,B;
(2)若函數(shù)F(x)=f(x)-g(x)在[2,3]上的最小值為9,最大值為21,試求a,b的值;
(3)求線段AB在x軸上的射影A1B1的長的取值范圍.

查看答案和解析>>

一、選擇題:(本題每小題5分,共50分)

1

2

3

4

5

6

7

8

9

10

D

B

C

D

D

C

B

A

A

C

 

二、填空題:(本題每小題4分,共16分)

11.      12.     13.    14.

三、解答題(本大題6小題,共84分。解答應(yīng)寫出文字說明,證明過程或演算步驟)

15.(本小題滿分14分)

…………………4分

    又

+1>    得B={y|y<或y>+1}……………………8分

∵A∩B=φ

∴  1

+19…………………12分

-2…………………14分

16.(本小題滿分14分)

解:(1),

    又    ………6分

(2)因 

 ………8分

,則

…………………10分

…14分

 

 

17.(本小題滿分14分)

解:                            (…………………3分)

=(…………………7分)

,

(1)若,即時(shí),==,(…………10分)

(2)若,即時(shí),

所以當(dāng)時(shí),=(…………………13分)

(…………………14分)

18.(本小題滿分14分)

解:(1)令,,即

 由

  ∵,∴,即數(shù)列是以為首項(xiàng)、為公差的等差數(shù)列, ∴  …………8分

(2)化簡得,即

 ∵,又∵時(shí),…………12分

 ∴各項(xiàng)中最大項(xiàng)的值為…………14分

19.(本小題滿分14分)

解:(1),由題意―――①

       又―――②

       聯(lián)立得                       …………5分

(2)依題意得   即 ,對恒成立,設(shè),則

      解

      當(dāng)   ……10分

      則

      又,所以;故只須   …………12分

      解得

      即的取值范圍是       …………14分

20.(本小題滿分14分)

解:(1)由,

    即函數(shù)的圖象交于不同的兩點(diǎn)A,B;                                               ……4分(2)

已知函數(shù),的對稱軸為,

在[2,3]上為增函數(shù),                          ……………6分

                      ……8分

(3)設(shè)方程

                                 ……10分

                                ……12分

設(shè)的對稱軸為上是減函數(shù),      ……14分

 


同步練習(xí)冊答案