題目列表(包括答案和解析)
(本小題滿分12分)二次函數(shù)的圖象經(jīng)過(guò)三點(diǎn).
(1)求函數(shù)的解析式(2)求函數(shù)在區(qū)間上的最大值和最小值
(本小題滿分12分)已知等比數(shù)列{an}中,
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式an;
(Ⅱ)設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,證明:;
(Ⅲ)設(shè),證明:對(duì)任意的正整數(shù)n、m,均有(本小題滿分12分)已知函數(shù),其中a為常數(shù).
(Ⅰ)若當(dāng)恒成立,求a的取值范圍;
(Ⅱ)求的單調(diào)區(qū)間.(本小題滿分12分)
甲、乙兩籃球運(yùn)動(dòng)員進(jìn)行定點(diǎn)投籃,每人各投4個(gè)球,甲投籃命中的概率為,乙投籃命中的概率為
(Ⅰ)求甲至多命中2個(gè)且乙至少命中2個(gè)的概率;
(Ⅱ)若規(guī)定每投籃一次命中得3分,未命中得-1分,求乙所得分?jǐn)?shù)η的概率分布和數(shù)學(xué)期望.(本小題滿分12分)已知是橢圓的兩個(gè)焦點(diǎn),O為坐標(biāo)原點(diǎn),點(diǎn)在橢圓上,且,圓O是以為直徑的圓,直線與圓O相切,并且與橢圓交于不同的兩點(diǎn)A、B.
(1)求橢圓的標(biāo)準(zhǔn)方程;w.w.w.k.s.5.u.c.o.m
(2)當(dāng)時(shí),求弦長(zhǎng)|AB|的取值范圍.
一、選擇題:每小題5分,共60分
BCCAB ACADB BB
二、填空題:每小題4分,共16分
13.,甲,甲:①
三、解答題:本題滿分共74分,解答應(yīng)有必要的文字說(shuō)明,解答過(guò)程或演算步驟
17.解:(1)甲、乙二人抽到的牌的所有基本事件(放快4用
(2)甲抽到3,乙抽到的牌只能是2,4,
因此乙抽到的牌的數(shù)字大于3的概率是;------------------------(6分)
(3)甲抽到牌比乙大有(3,2),(4,2),(4,3),(
此游戲不公平------------------(12分)
18.解:(1)由題意知.
(5分)
,
-----------------(7分)
(2)
-------------------------------------(9分)
---------------(12分)
19.解:(1)低面ABCD是正方形,O為中心,AC⊥BD
又SA=SC,AC⊥SO,又SOBD=0,AC⊥平面SBD-----------------(6分)
(2)連接
又由(1)知,AC⊥BD
且AC⊥平面SBD,
所以,AC⊥SB---------------(8分)
⊥⊥,且EMNE=E
⊥平面EMN-------------(10分)
因此,當(dāng)P點(diǎn)在線段MN上移動(dòng)時(shí),總有AC⊥EP-----(12分)
20.解:
-------------------------------(2分)
(2)
則
令--------------------------------(4分)
當(dāng)x在區(qū)間[-1,2]上變化時(shí),y’,y的變化情況如下表:
X
-1
1
(1,2)
2
Y’
+
0
-
0
+
Y
3/2
單增
極大值
單減
極小值
單增
3
又
-----------(6分)
(3)證明:
又
---------------------(12分)
21.解:(1)
當(dāng)
當(dāng),適合上式,
-------------------------------(4分)
(2),
①
, ②
兩式相減,得
=
=
=
--------------------------------(8分)
(3)證明,由
又
=
成立---------------------------------------------------(12分)
22.解:(1)由題意可知直線l的方程為,
因?yàn)橹本與圓相切,所以=1,既
從而----------------------------------------------------------------------------------------(6分)
(2)設(shè)則
---------------------------------(8分)
j當(dāng)
k當(dāng)
故舍去。
綜上所述,橢圓的方程為------------------------------------(14分)
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com