10(一中2008-2009月考理21).已知f(x)=在區(qū)間[-1.1]上是增函數(shù). 查看更多

 

題目列表(包括答案和解析)

(09年長沙一中第八次月考理)(本小題滿分12分)我校文化體育藝術(shù)節(jié)的乒乓球決賽在甲乙兩人中進(jìn)行,比賽規(guī)則如下:比賽采用7局4勝制(先勝4局這獲勝即比賽結(jié)束),在每一局比賽中,先得11分的一方為勝方;比賽沒有平局,10平后,先連得2分的一方為勝方

(1)根據(jù)以往戰(zhàn)況,每局比賽甲勝乙的概率為0.6,設(shè)比賽的場數(shù)為,求的分布列和期望;

(2)若雙方在每一分的爭奪中甲勝的概率也為0.6,求決勝局中甲在以8:9落后的情況下最終以12:10獲勝的概率。

查看答案和解析>>

(09年長沙一中第八次月考理) (13分)貨幣是有時間價值的,現(xiàn)在的100元比一年后的100元價值要大些。例如銀行存款的年利率為5%,那么現(xiàn)在的100元一年后就變?yōu)?00(1+5%)=105元,而一年后的100元只相當(dāng)于現(xiàn)在的元,即一年后100元的現(xiàn)值為元。一般地,若銀行的年利率為i,且在近n年內(nèi)保持不變,則第n年后的a元的現(xiàn)值為元。在經(jīng)濟(jì)決策時,?紤]貨幣的時間價值,把不同時期的貨幣化為其現(xiàn)值進(jìn)行決策。某工廠年初欲購買某類型機(jī)器,有甲乙兩種型號可供選擇,有關(guān)資料如下:甲型機(jī)器購貨款為10萬元,每年年底支付的維護(hù)費用(維修、更換零件)第一年為1000元,第二年為2000元,……(以后每年比上年增加1000元);乙型機(jī)器購貨款為6萬元,每年年底支付的維護(hù)費用(大修理等)均為10000元。

(1)若銀行利率為i,分別求購買甲乙型機(jī)器使用n年總成本(購貨款與各年維護(hù)費用之和)的現(xiàn)值,并求

(2)若i=5%,兩種型號機(jī)器均使用10年后就報廢,請你決策選用哪種機(jī)器(總成本現(xiàn)值較小者)。(參考數(shù)據(jù)1.05-9=0.6446,1.05-10=0.6139,1.05-11=0.5874)

查看答案和解析>>

(09年長沙一中第八次月考理)在數(shù)列中,如果存在非零常數(shù)T,使得 對任意正整數(shù)m均成立,那么就稱為周期數(shù)列,其中T叫做數(shù)列的周期。已知數(shù)列滿足,且 當(dāng)數(shù)列周期為3時,則該數(shù)列的前2009項的和為(   )

A .   1340              B .  1342              C .  1336             D . 1338

查看答案和解析>>

(09年長沙一中第八次月考理)(13分)已知直線L:x-y-3=0,拋物線C的頂點在原點,焦點在軸正半軸上,S是拋物線C上任意一點,T是直線L上任意一點,若|ST|的最小值為d>0時,點S的橫坐標(biāo)為2.

(1)求拋物線方程以及d的值;

(2)過拋物線C的對稱軸上任一點作直線與拋物線交于兩點,點是點關(guān)于原點的對稱點.設(shè)點分有向線段所成的比為,

證明:;

(3)設(shè)R為拋物線準(zhǔn)線上任意一點,過R作拋物線的兩條切線,切點分別為M,N,直線MN是否恒過一定點?若恒過定點,請指出定點;若不恒過定點,請說明理由。

查看答案和解析>>

(09年長沙一中第八次月考理)(13分)若存在實常數(shù),使得函數(shù)對其定義域上的任意實數(shù)分別滿足:,則稱直線的“隔離直線”.已知,(其中為自然對數(shù)的底數(shù)).

(Ⅰ)求的極值;

        (Ⅱ) 函數(shù)是否存在隔離直線?若存在,求出此隔離直線方程;若不存在,請說明理由.

查看答案和解析>>


同步練習(xí)冊答案