由知在和上是增函數(shù) 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)的圖象過(guò)坐標(biāo)原點(diǎn)O,且在點(diǎn)處的切線的斜率是.

(Ⅰ)求實(shí)數(shù)的值; 

(Ⅱ)求在區(qū)間上的最大值;

(Ⅲ)對(duì)任意給定的正實(shí)數(shù),曲線上是否存在兩點(diǎn)P、Q,使得是以O(shè)為直角頂點(diǎn)的直角三角形,且此三角形斜邊中點(diǎn)在軸上?說(shuō)明理由.

【解析】第一問(wèn)當(dāng)時(shí),,則。

依題意得:,即    解得

第二問(wèn)當(dāng)時(shí),,令,結(jié)合導(dǎo)數(shù)和函數(shù)之間的關(guān)系得到單調(diào)性的判定,得到極值和最值

第三問(wèn)假設(shè)曲線上存在兩點(diǎn)P、Q滿足題設(shè)要求,則點(diǎn)P、Q只能在軸兩側(cè)。

不妨設(shè),則,顯然

是以O(shè)為直角頂點(diǎn)的直角三角形,∴

    (*)若方程(*)有解,存在滿足題設(shè)要求的兩點(diǎn)P、Q;

若方程(*)無(wú)解,不存在滿足題設(shè)要求的兩點(diǎn)P、Q.

(Ⅰ)當(dāng)時(shí),,則。

依題意得:,即    解得

(Ⅱ)由(Ⅰ)知,

①當(dāng)時(shí),,令

當(dāng)變化時(shí),的變化情況如下表:

0

0

+

0

單調(diào)遞減

極小值

單調(diào)遞增

極大值

單調(diào)遞減

,,!上的最大值為2.

②當(dāng)時(shí), .當(dāng)時(shí), ,最大值為0;

當(dāng)時(shí), 上單調(diào)遞增!最大值為。

綜上,當(dāng)時(shí),即時(shí),在區(qū)間上的最大值為2;

當(dāng)時(shí),即時(shí),在區(qū)間上的最大值為。

(Ⅲ)假設(shè)曲線上存在兩點(diǎn)P、Q滿足題設(shè)要求,則點(diǎn)P、Q只能在軸兩側(cè)。

不妨設(shè),則,顯然

是以O(shè)為直角頂點(diǎn)的直角三角形,∴

    (*)若方程(*)有解,存在滿足題設(shè)要求的兩點(diǎn)P、Q;

若方程(*)無(wú)解,不存在滿足題設(shè)要求的兩點(diǎn)P、Q.

,則代入(*)式得:

,而此方程無(wú)解,因此。此時(shí)

代入(*)式得:    即   (**)

 ,則

上單調(diào)遞增,  ∵     ∴,∴的取值范圍是。

∴對(duì)于,方程(**)總有解,即方程(*)總有解。

因此,對(duì)任意給定的正實(shí)數(shù),曲線上存在兩點(diǎn)P、Q,使得是以O(shè)為直角頂點(diǎn)的直角三角形,且此三角形斜邊中點(diǎn)在軸上

 

查看答案和解析>>

設(shè)二次函數(shù)f(x)=(k-4)x2+kx
 &(k∈R)
,對(duì)任意實(shí)數(shù)x,有f(x)≤6x+2恒成立;數(shù)列{an}滿足an+1=f(an).
(1)求函數(shù)f(x)的解析式和值域;
(2)試寫(xiě)出一個(gè)區(qū)間(a,b),使得當(dāng)a1∈(a,b)時(shí),數(shù)列{an}在這個(gè)區(qū)間上是遞增數(shù)列,并說(shuō)明理由;
(3)已知,是否存在非零整數(shù)λ,使得對(duì)任意n∈N*,都有log3(
1
1
2
-a1
)+log3(
1
1
2
-a2
)+…+log3(
1
1
2
-an
)>(-1)n-12λ+nlog32-1
-1+(-1)n-12λ+nlog32恒成立,若存在,求之;若不存在,說(shuō)明理由.

查看答案和解析>>

設(shè)二次函數(shù)f(x)=(k-4)x2+kx(k∈R),對(duì)任意實(shí)數(shù)x,f(x)≤6x+2恒成立;數(shù)列{an}滿足an+1=f(an).
(1)求函數(shù)f(x)的解析式和值域;
(2)試寫(xiě)出一個(gè)區(qū)間(a,b),使得當(dāng)a1∈(a,b)時(shí),數(shù)列{an}在這個(gè)區(qū)間上是遞增數(shù)列,并說(shuō)明理由;
(3)已知,求:log3(
1
1
2
-a1
)+log3(
1
1
2
-a2
)+…+log3(
1
1
2
-an
)

查看答案和解析>>

設(shè)二次函數(shù)f(x)=(k-4)x2+kx
 &(k∈R)
,對(duì)任意實(shí)數(shù)x,f(x)≤6x+2恒成立;正數(shù)數(shù)列{an}滿足an+1=f(an).
(1)求函數(shù)f(x)的解析式和值域;
(2)試寫(xiě)出一個(gè)區(qū)間(a,b),使得當(dāng)an∈(a,b)時(shí),數(shù)列{an}在這個(gè)區(qū)間上是遞增數(shù)列,并說(shuō)明理由;
(3)若已知,求證:數(shù)列{lg(
1
2
-an)+lg2}
是等比數(shù)列.

查看答案和解析>>

設(shè)二次函數(shù),對(duì)任意實(shí)數(shù),有恒成立;數(shù)列滿足.

(1)求函數(shù)的解析式和值域;

(2)證明:當(dāng)時(shí),數(shù)列在該區(qū)間上是遞增數(shù)列;

(3)已知,是否存在非零整數(shù),使得對(duì)任意,都有

 恒成立,若存在,求之;若不存在,說(shuō)明理由.

 

查看答案和解析>>


同步練習(xí)冊(cè)答案