查看更多

 

題目列表(包括答案和解析)

α是第四象限角,tanα=-
5
12
,則sinα=(  )
A、
1
5
B、-
1
5
C、
5
13
D、-
5
13

查看答案和解析>>

是否存在實數a,使得函數y=sin2x+acosx+
5
8
a-
3
2
在閉區(qū)間[0,
π
2
]
上的最大值是1?若存在,求出對應的a值;若不存在,說明理由.

查看答案和解析>>

是否存在這樣的實數a,使函數f(x)=x2+(3a-2)x+a-1在區(qū)間[-1,3]上與x軸恒有一個交點,且只有一個交點.若存在,求出范圍,若不存在,說明理由.

查看答案和解析>>

是否存在常數k和等差數列{an},使kan2-1=S2n-Sn+1恒成立,其中Sn為{an}的前n項和,若存在,試求出常數k和數列{an}的通項;若不存在,試說明理由.

查看答案和解析>>

是否存在實數a,使函數f(x)=log2(x+
x2+2
)-a
為奇函數,同時使函數g(x)=x(
1
ax-1
+a)
為偶函數,證明你的結論.

查看答案和解析>>

    <ins id="yggu2"></ins>

        2009.4

         

        1-10.CDABB   CDBDA

        11.       12. 4        13.        14.       15.  

        16.   17.

        18.解:(Ⅰ)由題意,有

        .…………………………5分

        ,得

        ∴函數的單調增區(qū)間為 .……………… 7分

        (Ⅱ)由,得

        .           ……………………………………………… 10分

        ,∴.      ……………………………………………… 14分

        19.解:(Ⅰ)設數列的公比為,由,.             …………………………………………………………… 4分

        ∴數列的通項公式為.      ………………………………… 6分

        (Ⅱ) ∵,    ,      ①

        .      ②         

        ①-②得: …………………12分

                     得,                           …………………14分

        20.解:(I)取中點,連接.

        分別是梯形的中位線

        ,又

        ∴面,又

        .……………………… 7分

        (II)由三視圖知,是等腰直角三角形,

             連接

             在面AC1上的射影就是,∴

             ,

        ∴當的中點時,與平面所成的角

          是.           ………………………………14分

                                                       

        21.解:(Ⅰ)由題意:.

        為點M的軌跡方程.     ………………………………………… 4分

        (Ⅱ)由題易知直線l1,l2的斜率都存在,且不為0,不妨設,MN方程為 聯立得:,設6ec8aac122bd4f6e

            ∴由拋物線定義知:|MN|=|MF|+|NF|…………7分

               同理RQ的方程為,求得.  ………………………… 9分

        .  ……………………………… 13分

        當且僅當時取“=”,故四邊形MRNQ的面積的最小值為32.………… 15分

        22. 解:(Ⅰ),由題意得,

        所以                    ………………………………………………… 4分

        (Ⅱ)證明:令,,

        得:,……………………………………………… 7分

        (1)當時,,在,即上單調遞增,此時.

                  …………………………………………………………… 10分

        (2)當時,,在,在,在,即上單調遞增,在上單調遞減,在上單調遞增,或者,此時只要或者即可,得,

        .                        …………………………………………14分

        由 (1) 、(2)得 .

        ∴綜上所述,對于,使得成立. ………………15分


        同步練習冊答案