得,則由, 解得F(3,0) 查看更多

 

題目列表(包括答案和解析)

已知f(x)是定義在(-∞,0)∪(0,+∞)上的奇函數(shù),當(dāng)x∈(0,+∞)時,f(x)=ax+2lnx,(a∈R)
(1)求f(x)的解析式;
(2)是否存在負實數(shù)a,使得當(dāng)x∈[-e,0)時,f(x)的最小值是4?如果存在,求出a的值;如果不存在,請說明理由.
(3)對x∈D如果函數(shù)F(x)的圖象在函數(shù)G(x)的圖象的下方,則稱函數(shù)F(x)在D上被函數(shù)G(x)覆蓋.求證:若a=1時,函數(shù)f(x)在區(qū)間x∈(1,+∞)上被函數(shù)g(x)=x3覆蓋.

查看答案和解析>>

已知f(x)是定義在(-∞,0)∪(0,+∞)上的奇函數(shù),當(dāng)x∈(0,+∞)時,f(x)=ax+2lnx,(a∈R)
(1)求f(x)的解析式;
(2)是否存在負實數(shù)a,使得當(dāng)x∈[-e,0)時,f(x)的最小值是4?如果存在,求出a的值;如果不存在,請說明理由.
(3)對x∈D如果函數(shù)F(x)的圖象在函數(shù)G(x)的圖象的下方,則稱函數(shù)F(x)在D上被函數(shù)G(x)覆蓋.求證:若a=1時,函數(shù)f(x)在區(qū)間x∈(1,+∞)上被函數(shù)g(x)=x3覆蓋.

查看答案和解析>>

已知f(x)是定義在(-∞,0)∪(0,+∞)上的奇函數(shù),當(dāng)x∈(0,+∞)時,f(x)=ax+2lnx,(a∈R)
(1)求f(x)的解析式;
(2)是否存在負實數(shù)a,使得當(dāng)x∈[-e,0)時,f(x)的最小值是4?如果存在,求出a的值;如果不存在,請說明理由.
(3)對x∈D如果函數(shù)F(x)的圖象在函數(shù)G(x)的圖象的下方,則稱函數(shù)F(x)在D上被函數(shù)G(x)覆蓋.求證:若a=1時,函數(shù)f(x)在區(qū)間x∈(1,+∞)上被函數(shù)g(x)=x3覆蓋.

查看答案和解析>>

已知f(x)是定義在(-∞,0)∪(0,+∞)上的奇函數(shù),當(dāng)x∈(0,+∞)時,f(x)=ax+2lnx,(a∈R)
(1)求f(x)的解析式;
(2)是否存在負實數(shù)a,使得當(dāng)x∈[-e,0)時,f(x)的最小值是4?如果存在,求出a的值;如果不存在,請說明理由.
(3)對x∈D如果函數(shù)F(x)的圖象在函數(shù)G(x)的圖象的下方,則稱函數(shù)F(x)在D上被函數(shù)G(x)覆蓋.求證:若a=1時,函數(shù)f(x)在區(qū)間x∈(1,+∞)上被函數(shù)g(x)=x3覆蓋.

查看答案和解析>>

設(shè)函數(shù)f(x)的定義域D關(guān)于原點對稱,0∈D,且存在常數(shù)a>0,使f(a)=1,又f(x1-x2)=
f(x1)-f(x2)1+f(x1)f(x2)
,
(1)寫出f(x)的一個函數(shù)解析式,并說明其符合題設(shè)條件;
(2)判斷并證明函數(shù)f(x)的奇偶性;
(3)若存在正常數(shù)T,使得等式f(x)=f(x+T)或者f(x)=f(x-T)對于x∈D都成立,則都稱f(x)是周期函數(shù),T為周期;試問f(x)是不是周期函數(shù)?若是,則求出它的一個周期T;若不是,則說明理由.

查看答案和解析>>


同步練習(xí)冊答案