所以實數的取值范圍是 14分 查看更多

 

題目列表(包括答案和解析)

(本題滿分14分)

已知函數,,

(Ⅰ)當時,若上單調遞增,求的取值范圍;

(Ⅱ)求滿足下列條件的所有實數對:當是整數時,存在,使得的最大值,的最小值;

(Ⅲ)對滿足(Ⅱ)的條件的一個實數對,試構造一個定義在,且上的函數,使當時,,當時,取得最大值的自變量的值構成以為首項的等差數列。

 

查看答案和解析>>

(本題滿分14分)
已知函數,,
(Ⅰ)當時,若上單調遞增,求的取值范圍;
(Ⅱ)求滿足下列條件的所有實數對:當是整數時,存在,使得的最大值,的最小值;
(Ⅲ)對滿足(Ⅱ)的條件的一個實數對,試構造一個定義在,且上的函數,使當時,,當時,取得最大值的自變量的值構成以為首項的等差數列。

查看答案和解析>>

(本題滿分14分)
已知函數,
(Ⅰ)當時,若上單調遞增,求的取值范圍;
(Ⅱ)求滿足下列條件的所有實數對:當是整數時,存在,使得的最大值,的最小值;
(Ⅲ)對滿足(Ⅱ)的條件的一個實數對,試構造一個定義在,且上的函數,使當時,,當時,取得最大值的自變量的值構成以為首項的等差數列。

查看答案和解析>>

(2011•洛陽二模)給出下列命題:
①設向量
e1
,
e2
滿足|
e1
|=2,|
e2
|=1,
e1
,
e2
的夾角為
π
3
.若向量2t
e1
+7
e2
e1
+t
e2
的夾角為鈍角,則實數t的取值范圍是(-7,-
1
2
);
②已知一組正數x1,x2,x3,x4的方差為s2=
1
4
(x12+x22+x32+x42)-4,則x1+1,x2+1,x3+1,x4+1的平均數為1
③設a,b,c分別為△ABC的角A,B,C的對邊,則方程x2+2ax+b2=o與x2+2cx-b2=0有公共根的充要條件是A=90°;
④若f(n)表示n2+1(n∈N)的各位上的數字之和,如112+1=122,1+2+2=5,所以f(n)=5,記f1(n)=f(n),f2(n)=f[f1(n)],…fk+1(n)=f[fk(n)],k∈N,則f20(5)=11.
上面命題中,假命題的序號是
 (寫出所有假命題的序號).

查看答案和解析>>

本題有(1)、(2)、(3)三個選考題,每題7分,請考生任選2題作答,滿分14分.如果多做,則按所做的前兩題記分.

(1)(本小題滿分7分)選修4—2:矩陣與變換

已知二階矩陣有特征值及對應的一個特征向量

(Ⅰ)求矩陣

(Ⅱ)設曲線在矩陣的作用下得到的方程為,求曲線的方程.

(2)(本小題滿分7分)選修4—4:坐標系與參數方程

在直角坐標系中,曲線的參數方程為為參數),若圓在以該直角坐標系的原點為極點、軸的正半軸為極軸的極坐標系下的方程為

(Ⅰ)求曲線的普通方程和圓的直角坐標方程;

(Ⅱ)設點是曲線上的動點,點是圓上的動點,求的最小值.

(3)(本小題滿分7分)選修4—5:不等式選講

已知函數,不等式上恒成立.

(Ⅰ)求的取值范圍;

(Ⅱ)記的最大值為,若正實數滿足,求的最大值.

查看答案和解析>>


同步練習冊答案