(Ⅰ)證明:平面平面, 查看更多

 

題目列表(包括答案和解析)

平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),已知兩點(diǎn)M(1,-3)、N(5,1),若點(diǎn)C滿足
OC
=t
OM
+(1-t)
ON
(t∈R),點(diǎn)C的軌跡與拋物線:y2=4x交于A、B兩點(diǎn).
(Ⅰ)求證:
OA
OB
;
(Ⅱ)在x軸上是否存在一點(diǎn)P(m,0)(m∈R),使得過(guò)P點(diǎn)的直線交拋物線于D、E兩點(diǎn),并以該弦DE為直徑的圓都過(guò)原點(diǎn).若存在,請(qǐng)求出m的值及圓心的軌跡方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

平面四邊形ABED中,O在線段AD上,且OA=1,OD=2,△OAB,△ODE都是正三角形.將四邊形ABED沿AD翻折后,使點(diǎn)B落在點(diǎn)C位置,點(diǎn)E落在點(diǎn)F位置,且F點(diǎn)在平面ABED上的射影恰為線段OD的中點(diǎn)(即垂線段的垂足點(diǎn)),所得多面體ABEDFC,如圖所示
(1)求棱錐F-OED的體積;             
(2)證明:BC∥EF.

查看答案和解析>>

平面ABDE⊥平面ABC,AC⊥BC,AC=BC=4,四邊形ABDE是直角梯形,BD∥AE,BD⊥BA,AE=2BD=4,O、M分別為CE、AB的中點(diǎn).
(Ⅰ) 證明:OD∥平面ABC;
(Ⅱ)能否在EM上找一點(diǎn)N,使得ON⊥平面ABDE?若能,請(qǐng)指出點(diǎn)N的位置,并加以證明;若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

平面ABDE⊥平面ABC,△ABC是等腰直角三角形,AC=BC=4,四邊形ABDE是直角梯形,BD∥AE,BD⊥BA,BD=
12
AE=2
,O、M分別為CE、AB的中點(diǎn).
(I)求證:OD∥平面ABC;
(II)能否在EM上找一點(diǎn)N,使得ON⊥平面ABDE?若能,請(qǐng)指出點(diǎn)N的位置,并加以證明;若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

()(本小題滿分12分)

如圖,四棱錐S-ABCD 的底面是正方形,每條側(cè)棱的長(zhǎng)都是地面邊長(zhǎng)的倍,P為側(cè)棱SD上的點(diǎn)。   

(Ⅰ)求證:ACSD;

(Ⅱ)若SD平面PAC,求二面角P-AC-D的大小

(Ⅲ)在(Ⅱ)的條件下,側(cè)棱SC上是否存在一點(diǎn)E,使得BE∥平面PAC。若存在,求SE:EC的值;若不存在,試說(shuō)明理由。

查看答案和解析>>

 

一.選擇題:本大題共12小題,每小題5分,共60分。

(1)A       (2)B        (3)B      (4)A    (5)D       (6)D 

(7)C       (8)C        (9)A     (10)C    (11)A      (12)B

 

二.填空題:本大題共4小題,每小題5分,共20分。

(13)        (14)2          (15)       (16)44

三.解答題:本大題共6小題,共70分,解答應(yīng)寫出文字說(shuō)明,證明過(guò)程或演算步驟。

(17)(本小題滿分10分)

(Ⅰ)解法一:由正弦定理得.

故      ,

又     

故      ,

即     

故      .

因?yàn)?nbsp;   ,

故     

      又      為三角形的內(nèi)角,

所以    .                    ………………………5分

解法二:由余弦定理得  .

      將上式代入    整理得

      故      ,  

又      為三角形內(nèi)角,

所以    .                    ………………………5分

(Ⅱ)解:因?yàn)?sub>

故      ,

由已知 

 

又因?yàn)?nbsp; .

得     

所以    ,

解得    .    ………………………………………………10分

 

(18)(本小題滿分12分)

 

(Ⅰ)證明:

             ∵,

             ∴

             又∵底面是正方形,

       ∴

             又∵,

       ∴

       又∵,

       ∴平面平面.    ………………………………………6分

(Ⅱ)解法一:如圖建立空間直角坐標(biāo)系

設(shè),則,在中,.

、、

的中點(diǎn),

        設(shè)是平面的一個(gè)法向量.

則由 可求得.

由(Ⅰ)知是平面的一個(gè)法向量,

,即.

∴二面角的大小為. ………………………………………12分

  解法二:

         設(shè),則,

中,.

設(shè),連接,過(guò),

連結(jié),由(Ⅰ)知.

在面上的射影為,

為二面角的平面角.

中,,,

,

.

.

即二面角的大小為. …………………………………12分

 

(19)(本小題滿分12分)

解:(Ⅰ)設(shè)取到的4個(gè)球全是白球的概率

.          …………………………………6分

(Ⅱ)設(shè)取到的4個(gè)球中紅球個(gè)數(shù)不少于白球個(gè)數(shù)的概率,

. ………………12分

 

(20)(本小題滿分12分)

解:(I)設(shè)等比數(shù)列的首項(xiàng)為,公比為,

依題意,有,

代入, 得

.               …………………………………2分

解之得  …………………6分

              …………………………………8分

(II)又單調(diào)遞減,∴.   …………………………………9分

. …………………………………10分

,即,,

故使成立的正整數(shù)n的最小值為8.………………………12分

 

(21)(本小題滿分12分)

(Ⅰ)解:設(shè)雙曲線方程為,,

及勾股定理得,

由雙曲線定義得

.               ………………………………………5分

(Ⅱ),,雙曲線的兩漸近線方程為

由題意,設(shè)的方程為,軸的交點(diǎn)為

交于點(diǎn)交于點(diǎn),

;由,

,

故雙曲線方程為.         ………………………………12分

 

(22)(本小題滿分12分)

解:(Ⅰ),

又因?yàn)楹瘮?shù)上為增函數(shù),

  上恒成立,等價(jià)于

  上恒成立.

,

故當(dāng)且僅當(dāng)時(shí)取等號(hào),而,

  的最小值為.         ………………………………………6分

(Ⅱ)由已知得:函數(shù)為奇函數(shù),

  , ,  ………………………………7分

.

切點(diǎn)為,其中

則切線的方程為:   ……………………8分

,

.

,

,

,

,

,由題意知,

從而.

,

.                    ………………………………………12分

 


同步練習(xí)冊(cè)答案