(11)已知點(diǎn).直線.是坐標(biāo)原點(diǎn).是直線上的一點(diǎn).若.則的最小值是 查看更多

 

題目列表(包括答案和解析)

已知,,其中O是坐標(biāo)原點(diǎn),直線l過(guò)定點(diǎn)A,其方向向量,動(dòng)點(diǎn)P到直線l的距離為d,且d

求動(dòng)點(diǎn)P的軌跡方程;

直線m:與點(diǎn)P的軌跡相交于M,N兩個(gè)不同點(diǎn),當(dāng)時(shí),求直線m的傾斜角α的取值范圍;

查看答案和解析>>

已知點(diǎn),動(dòng)點(diǎn)N(x,y),直線NP,NQ的斜率分別為k1,k2,且(其中“”可以是四則運(yùn)算加、減、乘、除中的任意一種運(yùn)算),坐標(biāo)原點(diǎn)為O,點(diǎn)M(2,1).

(Ⅰ)探求動(dòng)點(diǎn)N的軌跡方程;

(Ⅱ)若“”表示乘法,動(dòng)點(diǎn)N的軌跡再加上P,Q兩點(diǎn)記為曲線C,直線l平行于直線OM,且與曲線C交于A,B兩個(gè)不同的點(diǎn).

(ⅰ)若原點(diǎn)O在以AB為直徑的圓的內(nèi)部,試求出直線l在y軸上的截距m的取值范圍.

(ⅱ)試求出△AOB面積的最大值及此時(shí)直線l的方程.

查看答案和解析>>

已知點(diǎn)P是曲線C:
x=4cosθ
y=3sinθ
(θ為參數(shù),0≤θ≤π)上一點(diǎn),O為原點(diǎn).若直線OP的傾斜角為
π
4
,則點(diǎn)P的直角坐標(biāo)為
 

查看答案和解析>>

精英家教網(wǎng)已知點(diǎn)C為圓(x+1)2+y2=8的圓心,點(diǎn)A(1,0),P是圓上的動(dòng)點(diǎn),點(diǎn)Q在圓的半徑CP上,且
MQ
AP
=0,
AP
=2
AM

(1)當(dāng)點(diǎn)P在圓上運(yùn)動(dòng)時(shí),求點(diǎn)Q的軌跡方程;
(2)設(shè)過(guò)點(diǎn)(0,2)且斜率為2的直線l與(1)中所求的曲線交于B,D兩點(diǎn),O為坐標(biāo)原點(diǎn),求△BDO的面積.

查看答案和解析>>

已知點(diǎn)P是圓x2+y2=1上一動(dòng)點(diǎn),點(diǎn)P在y軸上的射影為Q,設(shè)滿足條件
QM
QP
(λ為非零常數(shù))的點(diǎn)M的軌跡為曲線C.
(1)求曲線C的方程;
(2)若存在過(guò)點(diǎn)N(
1
2
,0)
的直線l與曲線C相交于A、B兩點(diǎn),且
OA
OB
=0(O為坐標(biāo)原點(diǎn)),求λ的取值范圍.

查看答案和解析>>

 

一.選擇題:本大題共12小題,每小題5分,共60分。

(1)A       (2)B        (3)B      (4)A    (5)D       (6)D 

(7)C       (8)C        (9)A     (10)C    (11)A      (12)B

 

二.填空題:本大題共4小題,每小題5分,共20分。

(13)        (14)2          (15)       (16)44

三.解答題:本大題共6小題,共70分,解答應(yīng)寫(xiě)出文字說(shuō)明,證明過(guò)程或演算步驟。

(17)(本小題滿分10分)

(Ⅰ)解法一:由正弦定理得.

故     

又     

故      ,

即      ,

故      .

因?yàn)?nbsp;  

故     

      又      為三角形的內(nèi)角,

所以    .                    ………………………5分

解法二:由余弦定理得  .

      將上式代入    整理得

      故      ,  

又      為三角形內(nèi)角,

所以    .                    ………………………5分

(Ⅱ)解:因?yàn)?sub>

故      ,

由已知 

 

又因?yàn)?nbsp; .

得     

所以    ,

解得    .    ………………………………………………10分

 

(18)(本小題滿分12分)

 

(Ⅰ)證明:

             ∵

             ∴

             又∵底面是正方形,

       ∴

             又∵,

       ∴,

       又∵,

       ∴平面平面.    ………………………………………6分

(Ⅱ)解法一:如圖建立空間直角坐標(biāo)系

設(shè),則,在中,.

、、、、、

的中點(diǎn),,

        設(shè)是平面的一個(gè)法向量.

則由 可求得.

由(Ⅰ)知是平面的一個(gè)法向量,

,

,即.

∴二面角的大小為. ………………………………………12分

  解法二:

         設(shè),則,

中,.

設(shè),連接,過(guò)

連結(jié),由(Ⅰ)知.

在面上的射影為,

為二面角的平面角.

中,,,

,

.

.

即二面角的大小為. …………………………………12分

 

(19)(本小題滿分12分)

解:(Ⅰ)設(shè)取到的4個(gè)球全是白球的概率,

.          …………………………………6分

(Ⅱ)設(shè)取到的4個(gè)球中紅球個(gè)數(shù)不少于白球個(gè)數(shù)的概率

. ………………12分

 

(20)(本小題滿分12分)

解:(I)設(shè)等比數(shù)列的首項(xiàng)為,公比為

依題意,有,

代入, 得

.               …………………………………2分

解之得  …………………6分

              …………………………………8分

(II)又單調(diào)遞減,∴.   …………………………………9分

. …………………………………10分

,即,

故使成立的正整數(shù)n的最小值為8.………………………12分

 

(21)(本小題滿分12分)

(Ⅰ)解:設(shè)雙曲線方程為,,

,及勾股定理得

由雙曲線定義得

.               ………………………………………5分

(Ⅱ),,雙曲線的兩漸近線方程為

由題意,設(shè)的方程為,軸的交點(diǎn)為

交于點(diǎn)交于點(diǎn),

;由,

,

,

故雙曲線方程為.         ………………………………12分

 

(22)(本小題滿分12分)

解:(Ⅰ),

又因?yàn)楹瘮?shù)上為增函數(shù),

  上恒成立,等價(jià)于

  上恒成立.

,

故當(dāng)且僅當(dāng)時(shí)取等號(hào),而,

  的最小值為.         ………………………………………6分

(Ⅱ)由已知得:函數(shù)為奇函數(shù),

  ,  ………………………………7分

.

切點(diǎn)為,其中

則切線的方程為:   ……………………8分

.

,

,

,

,

,由題意知,

從而.

.                    ………………………………………12分

 


同步練習(xí)冊(cè)答案