在區(qū)間上的值域. 查看更多

 

題目列表(包括答案和解析)

已知函數(shù),求函數(shù)f(x)在區(qū)間上的值域.

查看答案和解析>>

已知函數(shù),求函數(shù)f(x)在區(qū)間上的值域.

查看答案和解析>>

函數(shù)f(x)=cos(-
x
2
)+cos(
1
2
π-
x
2
),x∈R

(1)求f(x)的值域;
(2)求f(x)在[0,π)上的單調(diào)遞減區(qū)間.

查看答案和解析>>

函數(shù)f(x)的定義域D={x|x≠0},且滿足對于任意x1,x2∈D,有f(x1•x2)=f(x1)+f(x2).
(1)求f(1)與f(-1)的值;
(2)判斷函數(shù)的奇偶性并證明;
(3)若x>1時,f(x)>0,求證f(x)在區(qū)間(0,+∞)上是增函數(shù);
(4)在(3)的條件下,若f(4)=1,求不等式f(3x+1)≤2的解集.

查看答案和解析>>

函數(shù)f(x)是定義在[0,1]上的增函數(shù),滿足f(x)=2f(
x
2
)
且f(1)=1,在每個區(qū)間(
1
2i
,
1
2i-1
]
(i=1,2…)上,y=f(x)的圖象都是斜率為同一常數(shù)k的直線的一部分.
(1)求f(0)及f(
1
2
)
,f(
1
4
)
的值,并歸納出f(
1
2i
)(i=1,2,…)
的表達式
(2)設直線x=
1
2i
,x=
1
2i-1
,x軸及y=f(x)的圖象圍成的矩形的面積為ai(i=1,2…),記S(k)=
lim
n→∞
(a1+a2+…+an)
,求S(k)的表達式,并寫出其定義域和最小值.

查看答案和解析>>

一、選擇題(每小題5分,共50分)

題號

1

2

3

4

5

6

7

8

9

10

答案

D

D

C

B

C

A

B

B

A

C

二、填空題(每小題4分,共24分)

11.6ec8aac122bd4f6e;     12.6ec8aac122bd4f6e;    13.6ec8aac122bd4f6e;    14.6ec8aac122bd4f6e;     15.6ec8aac122bd4f6e;     16.(4);

6ec8aac122bd4f6e

 

19.解:∵6ec8aac122bd4f6e,6ec8aac122bd4f6e,∴6ec8aac122bd4f6e………………2分

6ec8aac122bd4f6e6ec8aac122bd4f6e,………………8分

∴sinb=sin[(a+b)-a]=sin(a+b)cosa-cos(a+b)sina=6ec8aac122bd4f6e………………12分

 

20.(1)f(x) 6ec8aac122bd4f6e

6ec8aac122bd4f6e6ec8aac122bd4f6e6ec8aac122bd4f6e…………4分

6ec8aac122bd4f6e

6ec8aac122bd4f6e得,對稱軸方程為:6ec8aac122bd4f6e………………6分

(2)由6ec8aac122bd4f6e得,f(x)的單調(diào)遞減區(qū)間為:6ec8aac122bd4f6e,k∈Z

    ………………9分

(3)由6ec8aac122bd4f6e,得6ec8aac122bd4f6e,則6ec8aac122bd4f6e,

所以函數(shù)f(x)在區(qū)間6ec8aac122bd4f6e上的值域為6ec8aac122bd4f6e………………13分

 

21.解:(1)依題意,得6ec8aac122bd4f6e,∴6ec8aac122bd4f6e,∴6ec8aac122bd4f6e,…………2分

∵最大值為2,最小值為-2,∴A=2∴6ec8aac122bd4f6e,………………4分

∵圖象經(jīng)過(0,1),∴2sinj=1,即6ec8aac122bd4f6e6ec8aac122bd4f6e6ec8aac122bd4f6e,………………6分

6ec8aac122bd4f6e………………7分

(2)∵6ec8aac122bd4f6e,∴-2≤ f(x) ≤ 2

6ec8aac122bd4f6e6ec8aac122bd4f6e解得,6ec8aac122bd4f6e6ec8aac122bd4f6e………………12分

 

22.解:(1)6ec8aac122bd4f6e

6ec8aac122bd4f6e=2cos2x+cosx-1………………5分

(2)要使圖象至少有一公共點,須使f(x)=g(x)在上至少有一解,

令t=cos x,∵x∈(0,p) ∴x與t一一對應,且t∈(-1,1),

即方程2t2+t-1 = t2+(a+1)t + (a-3)在(-1,1)上至少有一解,………………7分

整理得:t2-at+(2-a)=0

1°一解:f(1)?f(-1)=(3-2a)?3<0,解得:6ec8aac122bd4f6e………………9分

2°兩解(含重根的情形):

6ec8aac122bd4f6e,解得:6ec8aac122bd4f6e,∴6ec8aac122bd4f6e……11分

綜上所述:6ec8aac122bd4f6e………………12分

 

 

本資料由《七彩教育網(wǎng)》www.7caiedu.cn 提供!


同步練習冊答案