17.利用“五點法 畫出函數(shù).的簡圖. 查看更多

 

題目列表(包括答案和解析)

(1)利用“五點法”畫出函數(shù)y=sin(
1
2
x+
π
6
)
在長度為一個周期的閉區(qū)間的簡圖(要求列表描點)
(2)指出函數(shù)的振幅,周期,頻率,初相,相位.

查看答案和解析>>

(1)利用“五點法”畫出函數(shù)數(shù)學公式在長度為一個周期的閉區(qū)間的簡圖(要求列表描點)
(2)指出函數(shù)的振幅,周期,頻率,初相,相位.

查看答案和解析>>

利用五點法,在[0,2π]上畫出下列函數(shù)的簡圖:

(1)y=sinx-1;(2)y=2cosx.

查看答案和解析>>

已知函數(shù)f(x)=cos2x+2sinxcosx-sin2x.
(Ⅰ)將f(x)化簡成f(x)=Asin(ωx+φ)(其中A>0,ω>0)的形式;
(Ⅱ)利用“五點法”畫出函數(shù)f(x)在一個周期內(nèi)的簡圖.(要求先列表,然后在答題卷給出的平面直角坐標系內(nèi)畫圖)

查看答案和解析>>

已知函數(shù)f(x)=cos2x+2sinxcosx-sin2x.
(Ⅰ)將f(x)化簡成f(x)=Asin(ωx+φ)(其中A>0,ω>0)的形式;
(Ⅱ)利用“五點法”畫出函數(shù)f(x)在一個周期內(nèi)的簡圖.(要求先列表,然后在答題卷給出的平面直角坐標系內(nèi)畫圖)

查看答案和解析>>

一、選擇題(每小題5分,共50分)

題號

1

2

3

4

5

6

7

8

9

10

答案

D

D

C

B

C

A

B

B

A

C

二、填空題(每小題4分,共24分)

11.6ec8aac122bd4f6e;     12.6ec8aac122bd4f6e;    13.6ec8aac122bd4f6e;    14.6ec8aac122bd4f6e;     15.6ec8aac122bd4f6e;     16.(4);

6ec8aac122bd4f6e

 

19.解:∵6ec8aac122bd4f6e,6ec8aac122bd4f6e,∴6ec8aac122bd4f6e………………2分

6ec8aac122bd4f6e,6ec8aac122bd4f6e,………………8分

∴sinb=sin[(a+b)-a]=sin(a+b)cosa-cos(a+b)sina=6ec8aac122bd4f6e………………12分

 

20.(1)f(x) 6ec8aac122bd4f6e

6ec8aac122bd4f6e6ec8aac122bd4f6e6ec8aac122bd4f6e…………4分

6ec8aac122bd4f6e

6ec8aac122bd4f6e得,對稱軸方程為:6ec8aac122bd4f6e………………6分

(2)由6ec8aac122bd4f6e得,f(x)的單調(diào)遞減區(qū)間為:6ec8aac122bd4f6e,k∈Z

    ………………9分

(3)由6ec8aac122bd4f6e,得6ec8aac122bd4f6e,則6ec8aac122bd4f6e,

所以函數(shù)f(x)在區(qū)間6ec8aac122bd4f6e上的值域為6ec8aac122bd4f6e………………13分

 

21.解:(1)依題意,得6ec8aac122bd4f6e,∴6ec8aac122bd4f6e,∴6ec8aac122bd4f6e,…………2分

∵最大值為2,最小值為-2,∴A=2∴6ec8aac122bd4f6e,………………4分

∵圖象經(jīng)過(0,1),∴2sinj=1,即6ec8aac122bd4f6e6ec8aac122bd4f6e6ec8aac122bd4f6e,………………6分

6ec8aac122bd4f6e………………7分

(2)∵6ec8aac122bd4f6e,∴-2≤ f(x) ≤ 2

6ec8aac122bd4f6e6ec8aac122bd4f6e解得,6ec8aac122bd4f6e6ec8aac122bd4f6e………………12分

 

22.解:(1)6ec8aac122bd4f6e

6ec8aac122bd4f6e=2cos2x+cosx-1………………5分

(2)要使圖象至少有一公共點,須使f(x)=g(x)在上至少有一解,

令t=cos x,∵x∈(0,p) ∴x與t一一對應,且t∈(-1,1),

即方程2t2+t-1 = t2+(a+1)t + (a-3)在(-1,1)上至少有一解,………………7分

整理得:t2-at+(2-a)=0

1°一解:f(1)?f(-1)=(3-2a)?3<0,解得:6ec8aac122bd4f6e………………9分

2°兩解(含重根的情形):

6ec8aac122bd4f6e,解得:6ec8aac122bd4f6e,∴6ec8aac122bd4f6e……11分

綜上所述:6ec8aac122bd4f6e………………12分

 

 

本資料由《七彩教育網(wǎng)》www.7caiedu.cn 提供!


同步練習冊答案