題目列表(包括答案和解析)
已知函數(shù).
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)設(shè),若對任意,,不等式 恒成立,求實數(shù)的取值范圍.
【解析】第一問利用的定義域是
由x>0及 得1<x<3;由x>0及得0<x<1或x>3,
故函數(shù)的單調(diào)遞增區(qū)間是(1,3);單調(diào)遞減區(qū)間是
第二問中,若對任意不等式恒成立,問題等價于只需研究最值即可。
解: (I)的定義域是 ......1分
............. 2分
由x>0及 得1<x<3;由x>0及得0<x<1或x>3,
故函數(shù)的單調(diào)遞增區(qū)間是(1,3);單調(diào)遞減區(qū)間是 ........4分
(II)若對任意不等式恒成立,
問題等價于, .........5分
由(I)可知,在上,x=1是函數(shù)極小值點,這個極小值是唯一的極值點,
故也是最小值點,所以; ............6分
當(dāng)b<1時,;
當(dāng)時,;
當(dāng)b>2時,; ............8分
問題等價于 ........11分
解得b<1 或 或 即,所以實數(shù)b的取值范圍是
(本小題滿分12分)已知函數(shù)
(I)若函數(shù)在區(qū)間上存在極值,求實數(shù)a的取值范圍;
(II)當(dāng)時,不等式恒成立,求實數(shù)k的取值范圍.
(Ⅲ)求證:解:(1),其定義域為,則令,
則,
當(dāng)時,;當(dāng)時,
在(0,1)上單調(diào)遞增,在上單調(diào)遞減,
即當(dāng)時,函數(shù)取得極大值. (3分)
函數(shù)在區(qū)間上存在極值,
,解得 (4分)
(2)不等式,即
令
(6分)
令,則,
,即在上單調(diào)遞增, (7分)
,從而,故在上單調(diào)遞增, (7分)
(8分)
(3)由(2)知,當(dāng)時,恒成立,即,
令,則, (9分)
(10分)
以上各式相加得,
即,
即
(12分)
。
(本題滿分12分)已知函數(shù),
(I)求函數(shù)的遞增區(qū)間;
(II)求函數(shù)在區(qū)間上的值域。
已知函數(shù)
(I)求函數(shù) 的最小正周期和圖象的對稱軸方程;
(II)求函數(shù)在區(qū)間上的值域。
一、選擇題:
1―5 ACBBD 6―10 BCDAC
二、填空題:
11.60 12. 13.― 14.
15.2 16. 17.
三、解答題:
18.解:(I)
|