(II)設(shè)經(jīng)過(guò)圓的圓心且不與坐標(biāo)軸垂直的直線交(Ⅰ)中的軌跡于兩點(diǎn)..線 查看更多

 

題目列表(包括答案和解析)

(選修4—1幾何證明選講)已知:直線AB過(guò)圓心O,交⊙O于AB,直線AF交⊙O于F(不與B重合),直線l與⊙O相切于C,交AB于E,且與AF垂直,垂足為G,連結(jié)AC

求證:(1)   (2)AC2=AE·AF

23(選修4—4坐標(biāo)系與參數(shù)方程選講)以直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),軸的正半軸為極軸,且兩個(gè)坐標(biāo)系取相等的單位長(zhǎng)度.已知直線經(jīng)過(guò)點(diǎn)P(1,1),傾斜角

(I)寫(xiě)出直線參數(shù)方程;

(II)設(shè)與圓相交于兩點(diǎn)A、B,求點(diǎn)P到A、B兩點(diǎn)的距離之積.

24.選修4-5:不等式選講

設(shè)函數(shù)

(Ⅰ)求不等式的解集;

(Ⅱ),使,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

(文)已知一個(gè)動(dòng)圓與圓M1:(x+1)2+y2=1外切,同時(shí)又與圓M2:(x-1)2+y2=25內(nèi)切.
(Ⅰ)求動(dòng)圓圓心M的軌跡C的方程;
(II)設(shè)經(jīng)過(guò)圓M1的圓心且不與坐標(biāo)軸垂直的直線交(Ⅰ)中的軌跡C于兩點(diǎn)A、B,線段AB的垂直平分線與x軸交于點(diǎn)G,求G點(diǎn)橫坐標(biāo)的取值范圍.

查看答案和解析>>

(文)已知一個(gè)動(dòng)圓與圓M1:(x+1)2+y2=1外切,同時(shí)又與圓M2:(x-1)2+y2=25內(nèi)切.
(Ⅰ)求動(dòng)圓圓心M的軌跡C的方程;
(II)設(shè)經(jīng)過(guò)圓M1的圓心且不與坐標(biāo)軸垂直的直線交(Ⅰ)中的軌跡C于兩點(diǎn)A、B,線段AB的垂直平分線與x軸交于點(diǎn)G,求G點(diǎn)橫坐標(biāo)的取值范圍.

查看答案和解析>>

一、選擇題:(每小題5分,共60分)

1.C       2.D      3.D      4. 文C理B      5.B      6.C       7. 文C理A   

8.C      9.A       10.D     11.A.             12. 文B理D

二、填空題:(每小題4分,共16分)

13.;    14. 2        15.或者;    16.③④

三、解答題:(共74分)

17.解:設(shè)關(guān)于軸對(duì)稱(chēng)的點(diǎn)為,易知點(diǎn)的坐標(biāo)為(-2,-3)。   ……2分

         ∵反射光線的反向延長(zhǎng)線必過(guò)(-2,-3),                    ……2分

又直線與已知直線平行,∴。                      ……2分

∴直線的方程為。                                   ……2分

由兩條平行直線間的距離公式,可得。           ……3分

∴所求的直線和直線的距離為。                           ……1分

學(xué)科網(wǎng)(Zxxk.Com)18.證明:

學(xué)科網(wǎng)(Zxxk.Com)        

 

 

 

 

 

 

 

∵AM為平面PCD的斜線,MN為斜線AM在平面PCD的射影,        ……2分

       又MN⊥PC交PC于M,                                     

∴由三垂線定理,可知AM⊥PC.                                    ……1分

 19.解:∵圓C經(jīng)過(guò)點(diǎn)A(2 , 0) 和點(diǎn)A?,又點(diǎn)A(2 , 0)和點(diǎn)A?關(guān)于直線對(duì)稱(chēng),

∴由垂徑定理,可知直線必過(guò)圓C的圓心。                       ……1分

聯(lián)立方程,可得解得        ……2分

>0,∴所求的圓的方程為               ……1分

∵過(guò)點(diǎn)B的直線與該圓相切,易知B在圓外。    ……1分

∴過(guò)點(diǎn)B與該圓相切的切線一定有兩條。                  ……1分

不妨設(shè)直線的方程為                             ……1分

則有=2                                     ……2分

解之,得.                                                 ……1分

易知另一條切線的方程                                     ……1分

∴所求的直線方程為                          ……1分

學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)(Zxxk.Com)20.(Ⅰ)

 

 

 

 

  

學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)(Zxxk.Com)

21.(文)解:(Ⅰ)由題意,知雙曲線的右準(zhǔn)線方程為      ……1分

           經(jīng)過(guò)第一象限的雙曲線的漸近線的方程為                 ……1分

       聯(lián)立可得點(diǎn)                                  ……1分

學(xué)科網(wǎng)(Zxxk.Com)   

 

 

 

 

 

(Ⅱ)由(Ⅰ),可知點(diǎn)P的坐標(biāo)為雙曲線的焦點(diǎn)的坐標(biāo)為.

……1分

        而也是拋物線的焦點(diǎn),設(shè)PF所在的直線方程為

,與拋物線相交于、兩點(diǎn)。        ……1分

  聯(lián)立  可得                    ……1分

 其兩根、分別是A、B的橫坐標(biāo),∴              ……1分

∴有拋物線的焦點(diǎn)弦長(zhǎng)公式,可知            ……1分

學(xué)科網(wǎng)(Zxxk.Com)∴直線PF被拋物線截得的線段長(zhǎng)為                              ……1分

學(xué)科網(wǎng)(Zxxk.Com)

 

 

 

 

 

 

 

 

學(xué)科網(wǎng)(Zxxk.Com)

 

 

 

 

學(xué)科網(wǎng)(Zxxk.Com)

 

 

學(xué)科網(wǎng)(Zxxk.Com)

學(xué)科網(wǎng)(Zxxk.Com)

 

 

 

 

學(xué)科網(wǎng)(Zxxk.Com)

 

 

 

 

 

 

 

 

 

 

 

 

 

學(xué)科網(wǎng)(Zxxk.Com)

 

 

學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)(Zxxk.Com)

 

 

 


同步練習(xí)冊(cè)答案