題目列表(包括答案和解析)
(本題滿分14分)
已知四邊形ABCD是正方形,P是平面ABCD外一點,且PA=PB=PC=PD=AB=2,是棱的中點.建立適當?shù)目臻g直角坐標系,利用空間向量方法解答以下問題:
(1)求證:;
(2) 求證:;
(3)求直線與直線所成角的余弦值.
(本題滿分14分)
已知四邊形ABCD是正方形,P是平面ABCD外一點,且PA=PB=PC=PD=AB=2,是棱的中點.建立適當?shù)目臻g直角坐標系,利用空間向量方法解答以下問題:
(1)求證:;
(2) 求證:;
(3)求直線與直線所成角的余弦值.
已知函數(shù) R).
(Ⅰ)若 ,求曲線 在點 處的的切線方程;
(Ⅱ)若 對任意 恒成立,求實數(shù)a的取值范圍.
【解析】本試題主要考查了導數(shù)在研究函數(shù)中的運用。
第一問中,利用當時,.
因為切點為(), 則,
所以在點()處的曲線的切線方程為:
第二問中,由題意得,即即可。
Ⅰ)當時,.
,
因為切點為(), 則,
所以在點()處的曲線的切線方程為:. ……5分
(Ⅱ)解法一:由題意得,即. ……9分
(注:凡代入特殊值縮小范圍的均給4分)
,
因為,所以恒成立,
故在上單調遞增, ……12分
要使恒成立,則,解得.……15分
解法二: ……7分
(1)當時,在上恒成立,
故在上單調遞增,
即. ……10分
(2)當時,令,對稱軸,
則在上單調遞增,又
① 當,即時,在上恒成立,
所以在單調遞增,
即,不合題意,舍去
②當時,, 不合題意,舍去 14分
綜上所述:
|
|
|
|
5 |
5 |
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com