題目列表(包括答案和解析)
函數(shù)f(x)=x3-3ax2+3b2x(a、b∈R).
(Ⅰ)若b=0,且f(x)在x=2處取得極小值,求實數(shù)a的值;
(Ⅱ)若函數(shù)f(x)在R上是增函數(shù),試探究a,b應(yīng)滿足什么條件;
(Ⅲ)若a<a<b,不等式對任意x∈(1,+∞)恒成立,求整數(shù)k的最大值.
設(shè)函數(shù)f(x)是定義在(-∞,+∞)上的增函數(shù),若不等式f(1-ax-x2)<f(2-a)對于任意x∈[0,1]恒成立,求實數(shù)a的取值范圍.
設(shè)函數(shù)f(x)=2ax3-(6a+3)x2+12x(a∈R).
(1)當(dāng)a=1時,求函數(shù)f(x)的極大值和極小值;
(2)若函數(shù)f(x)在區(qū)間(-∞,1)上是增函數(shù),求實數(shù)a的取值范圍.
設(shè)函數(shù)f(x)=2ax3-(6a+3)x2+12x(a∈R).
(Ⅰ)當(dāng)a=1時,求函數(shù)f(x)的極大值和極小值;
(Ⅱ)若函數(shù)f(x)在區(qū)間(-∞,1)上是增函數(shù),求實數(shù)a的取值范圍.
設(shè)函數(shù)f(x)=2x+a·2-x-1(a為實數(shù)).
(1)若a<0,用函數(shù)單調(diào)性定義證明:y=f(x)在(-∞,+∞)上是增函數(shù);
(2)若a=0,y=g(x)的圖象與y=f(x)的圖象關(guān)于直線y=x對稱,求函數(shù)y=g(x)的解析式.
1.A 2.B 3.B 4.D 5.(理)C (文)A 6.B 7.A 8.B 9.A
10.B 11.(理)A。ㄎ模〤 12.B 13.(理)。ㄎ模25,60,15
14.-672 15.2.5小時 16.①,④
17.解析:設(shè)f(x)的二次項系數(shù)為m,其圖象上兩點為(1-x,)、B(1+x,)因為,,所以,由x的任意性得f(x)的圖象關(guān)于直線x=1對稱,若m>0,則x≥1時,f(x)是增函數(shù),若m<0,則x≥1時,f(x)是減函數(shù).
∵ ,,,,,
,
∴ 當(dāng)時,
,.
∵ , ∴ .
當(dāng)時,同理可得或.
綜上:的解集是當(dāng)時,為;
當(dāng)時,為,或.
18.解析:(理)(1)設(shè)甲隊在第五場比賽后獲得冠軍為事件M,則第五場比賽甲隊獲勝,前四場比賽甲隊獲勝三場
依題意得.
(2)設(shè)甲隊獲得冠軍為事件E,則E包含第四、第五、第六、第七場獲得冠軍四種情況,且它們被彼此互斥.
∴ .
(文)設(shè)甲袋內(nèi)恰好有4個白球為事件B,則B包含三種情況.
①甲袋中取2個白球,且乙袋中取2個白球,②甲袋中取1個白球,1個黑球,且乙袋中取1個白球,1個黑球,③甲、乙兩袋中各取2個黑球.
∴ .
19.解析:(甲)(1)建立如圖坐標(biāo)系:O為△ABC的重心,直線OP為z軸,AD為y軸,x軸平行于CB,
得A(0,,0)、B(1,,0)、D(0,,0)、E(0,,).
。2),,,,,
設(shè)AD與BE所成的角為,則.
∴ .
。ㄒ遥1)取中點E,連結(jié)ME、,
∴ ,MCEC. ∴ MC. ∴ ,M,C,N四點共面.
。2)連結(jié)BD,則BD是在平面ABCD內(nèi)的射影.
∵ , ∴ Rt△CDM~Rt△BCD,∠DCM=∠CBD.
∴ ∠CBD+∠BCM=90°. ∴ MC⊥BD. ∴ .
(3)連結(jié),由是正方形,知⊥.
∵ ⊥MC, ∴ ⊥平面.
∴ 平面⊥平面.
(4)∠是與平面所成的角且等于45°.
20.解析:(1).
∵ x≥1. ∴ ,
當(dāng)x≥1時,是增函數(shù),其最小值為.
∴ a<0(a=0時也符合題意). ∴ a≤0.
。2),即27-6a-3=0, ∴ a=4.
∴ 有極大值點,極小值點.
此時f(x)在,上時減函數(shù),在,+上是增函數(shù).
∴ f(x)在,上的最小值是,最大值是,(因).
21.解析:(1)∵ 斜率k存在,不妨設(shè)k>0,求出M(,2).直線MA方程為,直線MB方程為.
分別與橢圓方程聯(lián)立,可解出,.
∴ . ∴ (定值).
。2)設(shè)直線AB方程為,與聯(lián)立,消去y得
.
由D>0得-4<m<4,且m≠0,點M到AB的距離為.
設(shè)△AMB的面積為S. ∴ .
當(dāng)時,得.
22.解析:(1)∵ ,a,,
∴ ∴ ∴
∴ .
∴ a=2或a=3(a=3時不合題意,舍去). ∴a=2.
。2),,由可得
. ∴ .
∴ b=5
。3)由(2)知,, ∴ .
∴ . ∴ ,.
∵ ,.
當(dāng)n≥3時,
.
∴ . 綜上得 .
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com