題目列表(包括答案和解析)
如圖,在三棱錐中,平面平面,,,,為中點(diǎn).(Ⅰ)求點(diǎn)B到平面的距離;(Ⅱ)求二面角的余弦值.
【解析】第一問中利用因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912243024954937/SYS201207091224587495603078_ST.files/image012.png">,為中點(diǎn),所以
而平面平面,所以平面,再由題設(shè)條件知道可以分別以、、為,, 軸建立直角坐標(biāo)系得,,,,,,
故平面的法向量而,故點(diǎn)B到平面的距離
第二問中,由已知得平面的法向量,平面的法向量
故二面角的余弦值等于
解:(Ⅰ)因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912243024954937/SYS201207091224587495603078_ST.files/image012.png">,為中點(diǎn),所以
而平面平面,所以平面,
再由題設(shè)條件知道可以分別以、、為,, 軸建立直角坐標(biāo)系,得,,,,
,,故平面的法向量
而,故點(diǎn)B到平面的距離
(Ⅱ)由已知得平面的法向量,平面的法向量
故二面角的余弦值等于
已知四棱錐的底面為直角梯形,,底面,且,,是的中點(diǎn)。
(1)證明:面面;
(2)求與所成的角;
(3)求面與面所成二面角的余弦值.
【解析】(1)利用面面垂直的性質(zhì),證明CD⊥平面PAD.
(2)建立空間直角坐標(biāo)系,寫出向量與的坐標(biāo),然后由向量的夾角公式求得余弦值,從而得所成角的大小.
(3)分別求出平面的法向量和面的一個(gè)法向量,然后求出兩法向量的夾角即可.
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com