(Ⅰ)當(dāng)時(shí).求的不動(dòng)點(diǎn), 查看更多

 

題目列表(包括答案和解析)

(本小題滿分14分)

已知圓O:軸于A,B兩點(diǎn),曲線C是以為長(zhǎng)軸,離心率為的橢圓,其左焦點(diǎn)為F.若P是圓O上一點(diǎn),連結(jié)PF,過(guò)原點(diǎn)O作直線PF的垂線交直線X=-2于點(diǎn)Q.

(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;

(Ⅱ)若點(diǎn)P的坐標(biāo)為(1,1),求證:直線PQ與圓相切;

(Ⅲ)試探究:當(dāng)點(diǎn)P在圓O上運(yùn)動(dòng)時(shí)(不與A、B重合),直線PQ與圓O是否保持相切的位置關(guān)系?若是,請(qǐng)證明;若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

已知?jiǎng)狱c(diǎn)與定點(diǎn)的距離和它到直線的距離之比是常數(shù),記的軌跡為曲線.

(I)求曲線的方程;

(II)設(shè)直線與曲線交于兩點(diǎn),點(diǎn)關(guān)于軸的對(duì)稱(chēng)點(diǎn)為,試問(wèn):當(dāng)變化時(shí),直線軸是否交于一個(gè)定點(diǎn)?若是,請(qǐng)寫(xiě)出定點(diǎn)的坐標(biāo),并證明你的結(jié)論;若不是,請(qǐng)說(shuō)明理由.

 

查看答案和解析>>

已知?jiǎng)狱c(diǎn)與定點(diǎn)的距離和它到直線的距離之比是常數(shù),記的軌跡為曲線.
(I)求曲線的方程;
(II)設(shè)直線與曲線交于兩點(diǎn),點(diǎn)關(guān)于軸的對(duì)稱(chēng)點(diǎn)為,試問(wèn):當(dāng)變化時(shí),直線軸是否交于一個(gè)定點(diǎn)?若是,請(qǐng)寫(xiě)出定點(diǎn)的坐標(biāo),并證明你的結(jié)論;若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

已知?jiǎng)狱c(diǎn)與定點(diǎn)的距離和它到直線的距離之比是常數(shù),記的軌跡為曲線.
(I)求曲線的方程;
(II)設(shè)直線與曲線交于兩點(diǎn),點(diǎn)關(guān)于軸的對(duì)稱(chēng)點(diǎn)為,試問(wèn):當(dāng)變化時(shí),直線軸是否交于一個(gè)定點(diǎn)?若是,請(qǐng)寫(xiě)出定點(diǎn)的坐標(biāo),并證明你的結(jié)論;若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

已知?jiǎng)狱c(diǎn)P(x,y)與兩個(gè)定點(diǎn)M(-1,0),N(1,0)的連線的斜率之積等于常數(shù)λ(λ≠0)
(1)求動(dòng)點(diǎn)P的軌跡C的方程;
(2)試根據(jù)λ的取值情況討論軌跡C的形狀;
(3)當(dāng)λ=2時(shí),對(duì)于平面上的定點(diǎn)數(shù)學(xué)公式,試探究軌跡C上是否存在點(diǎn)P,使得∠EPF=120°,若存在,求出點(diǎn)P的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

一、選擇題:(每小題5分,共60分)

   A C C D D      A A B B C     C D

注:選擇題第⑺題選自課本43頁(yè)第6題.

二、填空題:(每小題4分,共16分)

(13) ;     (14) ;       (15) ;       (16) 6.

三、解答題:(本大題共6小題,共74分)

(17) 解:由對(duì)數(shù)函數(shù)的定義域知.                 ………………2分

解這個(gè)分式不等式,得.                          ………………4分

故函數(shù)的定義域?yàn)?sub>.                           ………………5分

,                  ………………8分

  因?yàn)?sub>,所以由對(duì)數(shù)函數(shù)的單調(diào)性知.          ………………9分

  又由)知,解這個(gè)分式不等式,得.  ………………11分

  故對(duì)于,當(dāng)                     ………………12分

(18) 解:(Ⅰ)由題意,=1又a>0,所以a=1.………………4分

      (Ⅱ),                 ………………6分

當(dāng)時(shí),,無(wú)遞增區(qū)間;       ………………8分

當(dāng)x<1時(shí),,它的遞增區(qū)間是.……11分

     綜上知:的單調(diào)遞增區(qū)間是.        ……………12分

(19)證明:(Ⅰ) 函數(shù)在上的單調(diào)增區(qū)間為

(證明方法可用定義法或?qū)?shù)法)                     ……………8分

  (Ⅱ) ,所以,解得.      ……………12分

(20) 解:(Ⅰ)設(shè)投資為萬(wàn)元,產(chǎn)品的利潤(rùn)為萬(wàn)元,產(chǎn)品的利潤(rùn)為萬(wàn)元.由題意設(shè)

由圖可知.                           ………………2分

,.                               ………………4分

從而,.             ………………5分(Ⅱ)設(shè)產(chǎn)品投入萬(wàn)元,則產(chǎn)品投入萬(wàn)元,設(shè)企業(yè)利潤(rùn)為萬(wàn)元.

,          ………………7分

,則

當(dāng)時(shí),,此時(shí).          ………………11分

答:當(dāng)產(chǎn)品投入6萬(wàn)元,則產(chǎn)品投入4萬(wàn)元時(shí),該企業(yè)獲得最大利潤(rùn),利潤(rùn)為2.8萬(wàn)元.                                                      ………………12分

(21)解:(Ⅰ) ……1分

       根據(jù)題意,                                                       …………4分

       解得.                                                                   …………6分

(Ⅱ)因?yàn)?sub> …………7分

   (i)時(shí),函數(shù)無(wú)最大值,

           不合題意,舍去.                                                                       …………9分

   (ii)時(shí),根據(jù)題意得

          

           解之得                                                                     …………11分

        為正整數(shù),   =3或4.                                                      …………12分

(22) 解:

(Ⅰ)當(dāng)時(shí),                    ………………2分

設(shè)為其不動(dòng)點(diǎn),即

的不動(dòng)點(diǎn)是.                   ……………4分

(Ⅱ)由得:.  由已知,此方程有相異二實(shí)根,

恒成立,即對(duì)任意恒成立.

          ………………8分(Ⅲ)設(shè),

直線是線段AB的垂直平分線,   ∴    …………10分

記AB的中點(diǎn)由(Ⅱ)知    

        ……………………12分

化簡(jiǎn)得:

(當(dāng)時(shí),等號(hào)成立).

                                     ……………………14分

 


同步練習(xí)冊(cè)答案