1.若實數(shù)x, a, 2x, b依次成等差數(shù)列.當b≠0時.則 查看更多

 

題目列表(包括答案和解析)

若實數(shù)x, a, 2x, b依次成等差數(shù)列,當b≠0時,則

A.              B.               C.               D.

查看答案和解析>>

若實數(shù)x,a,2x,b依次成等差數(shù)列,當b≠0時,則

[  ]

A.

B.

C.

D.

查看答案和解析>>

已知向量數(shù)學(xué)公式=(1,1),數(shù)學(xué)公式=(1,0),<數(shù)學(xué)公式,數(shù)學(xué)公式>=數(shù)學(xué)公式數(shù)學(xué)公式=-1;若△ABC的內(nèi)角A,B,C依次成等差數(shù)列,且A≤B≤C;
(1)若關(guān)于x的方程sin(2x+數(shù)學(xué)公式 )=數(shù)學(xué)公式 在[0,B]上有相異實根,求實數(shù)m的取值范圍;
(2)若向量數(shù)學(xué)公式=(cosA,2cos2 數(shù)學(xué)公式),試求|數(shù)學(xué)公式|的取值范圍.

查看答案和解析>>

已知向量=(1,1),=(1,0),<,>==-1;若△ABC的內(nèi)角A,B,C依次成等差數(shù)列,且A≤B≤C;
(1)若關(guān)于x的方程sin(2x+ )= 在[0,B]上有相異實根,求實數(shù)m的取值范圍;
(2)若向量=(cosA,2cos2 ),試求||的取值范圍.

查看答案和解析>>

已知向量
m
=(1,1),
q
=(1,0),<
n
,
p
>=
π
2
m
n
=-1;若△ABC的內(nèi)角A,B,C依次成等差數(shù)列,且A≤B≤C;
(1)若關(guān)于x的方程sin(2x+
π
3
)=
m
2
在[0,B]上有相異實根,求實數(shù)m的取值范圍;
(2)若向量
p
=(cosA,2cos2
C
2
),試求|
n
+
p
|的取值范圍.

查看答案和解析>>

 

1.D  2.C  3.C  4.A  5.A  6.D  7.C  8.D  9.A  10.C 

11.              12. 8       13.    14.   15. 2

16.依題意,即,由函數(shù)為奇函數(shù),

∴對于定義域內(nèi)的任意x有,即

,即,

解得

17.(1)如圖建立空間直角坐標系,設(shè),且

∴SC與AD所成的角為

18.(1)最后甲獲勝的概率為P1,乙獲勝的概率為P2,則,∴甲、乙兩隊各自獲勝的概率分

(2)乙隊第五局必須獲勝,前四局為獨立重復(fù)實驗,乙隊3∶2獲勝的概率為P3,則,∴乙隊以3∶2獲勝的概率為

19.(1)聯(lián)立兩個方程,從中消去y得

注意到a>b>c, a+b+c=0,∴a>0, c<0, ∴△>0, 故兩條曲線必交于兩個不同的交點A、B;

(2)設(shè)的兩個根為x1、x2,則AB在x軸上的射影的長

,由此可得

20.(1)設(shè){an}的公差為d,則65=10a1+45d,由a1=2,得d=1,

(2)設(shè)函數(shù)

故當x=e時,且當0<x<e時,當x>e時

∴函數(shù)在區(qū)間(0,e)內(nèi)單調(diào)遞增,而在區(qū)間上單調(diào)遞減,由及函數(shù)單調(diào)遞增可知函數(shù)與f(x)有相同的單調(diào)性,即在區(qū)間(0,e)內(nèi)單調(diào)遞增,而在區(qū)間上單調(diào)遞減,

注意到,由2<e<3知數(shù)列{bn}的最大項是第2項,這一項是;

(3)在數(shù)列{cn}不存在這樣的項使得它們按原順序成等比數(shù)列. 事實上由

. 綜合知即無法找到這樣的一些連續(xù)的項使其成等比數(shù)列.  

21.(1)若直線l與x軸不垂直,設(shè)其方程為,l與拋物線的交點坐標分別為、,由,即,

又由.

,則直線l的方程為,

則直線l過定點(2,0).

若直線l與x軸垂直,易得 l的方程為x=2,

則l也過定點(2,0).  綜上,直線l恒過定點(2,0).

(2)由(1)得,可得 解得k的取值范圍是

(3)假定,則有,如圖,即

由(1)得. 由定義得 從而有

均代入(*)得

,即這與相矛盾.

經(jīng)檢驗,當軸時,. 故


同步練習(xí)冊答案