A. B. C. D. 查看更多

 

題目列表(包括答案和解析)

 

第Ⅰ卷(選擇題,共50分)

1―3  AAD  4(文)D(理)B  5(文)B(理)C 

  • <abbr id="y46is"><dl id="y46is"></dl></abbr>

    1.3.5

    第Ⅱ卷(非選擇題,共100分)

    二、填空題

    11.4   12.96  13.-3  14.(文)(理)

    15.(文)   (理)

    三、解答題

    16.解:(1)

       

       

       

       

         …………(4分)

       (1)(文科)在時,

       

       

        在時,為減函數

        從而的單調遞減區(qū)間為;…………(文8分)

       (2)(理科)  

        當時,由得單調遞減區(qū)間為

        同理,當時,函數的單調遞減區(qū)間為…………(理8分)

       (3)當,變換過程如下:

        1°將的圖象向右平移個單位可得函數的圖象。

        2°將所得函數圖象上每個點的縱坐標擴大為原來的倍,而橫坐標保持不變,可得函數的圖象。

        3°再將所得圖象向上平移一個單位,可得的圖象……(12分)

       (其它的變換方法正確相應給分)

    17.解:(1)三棱柱ABC―A1B1C1為直三棱柱

        底面ABC

        又AC面ABC

        AC

        又

       

        又AC面B1AC

        …………(6分)

       (2)三棱柱ABC―A1B1C1為直三棱柱

        底面ABC

        為直線B1C與平面ABC所成的角,即

        過點A作AM⊥BC于M,過M作MN⊥B1C于N,加結AN。

        ∴平面BB1CC1⊥平面ABC

        ∴AM⊥平面BB1C1C

        由三垂線定理知AN⊥B1C從而∠ANM為二面角B―B1C―A的平面角。

        設AB=BB1=

        在Rt△B1BC中,BC=BB1

      

        即二面角B―B1C―A的正切值為 …………(文12分)

       (3)(理科)過點A1作A1H⊥平面B1AC于H,連結HC,則

        ∠A1CH為直線A1C與平面B1AC所成的角

        由

       

      在Rt………………(理12分)

    18.解:(文科)(1)從口袋A中摸出的3個球為最佳摸球組合即為從口袋A中摸出2個紅球和1個黑球,其概率為

      ………………………………(6分)

       (2)由題意知:每個口袋中摸球為最佳組合的概率相同,從5個口袋中摸球可以看成5次獨立重復試難,故所求概率為

      ……………………………………(12分)

       (理科)(1)設用隊獲第一且丙隊獲第二為事件A,則

      ………………………………………(6分)

       (2)可能的取值為0,3,6;則

      甲兩場皆輸:

      甲兩場只勝一場:

      <tfoot id="y46is"><del id="y46is"></del></tfoot>

      0

      3

      6

      P

       

        的分布列為

       

       

       

        …………………………(12分)

      19.解:(文科)(1)由

        函數的定義域為(-1,1)

        又

        

        …………………………………(6分)

         (2)任取、

        

        

        

        又

        ……(13分)

         (理科)(1)由

        

      又由函數

        當且僅當

        

        綜上…………………………………………………(6分)

         (2)

        

      ②令

      綜上所述實數m的取值范圍為……………(13分)

      20.解:(1)的解集有且只有一個元素

        

        又由

        

        當

        當

           …………………………………(文6分,理5分)

         (2)         ①

          ②

      由①-②得

      …………………………………………(文13分,理10分)

         (3)(理科)由題設

             

             綜上,得數列共有3個變號數,即變號數為3.……………………(理13分)

      21.解(1)

       ………………………………(文6分,理4分)(2)(2)當AB的斜率為0時,顯然滿足題意

      當AB的斜率不為0時,設,AB方程為代入橢圓方程

      整理得

       

      綜上可知:恒有.………………………………(文13分,理9分)

       


      同步練習冊答案
    • <abbr id="y46is"></abbr>