題目列表(包括答案和解析)
(本小題滿分12分)已知函數(shù)
(I)若函數(shù)在區(qū)間上存在極值,求實(shí)數(shù)a的取值范圍;
(II)當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)k的取值范圍.
(Ⅲ)求證:解:(1),其定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052512313679685506/SYS201205251234077812428021_ST.files/image007.png">,則令,
則,
當(dāng)時(shí),;當(dāng)時(shí),
在(0,1)上單調(diào)遞增,在上單調(diào)遞減,
即當(dāng)時(shí),函數(shù)取得極大值. (3分)
函數(shù)在區(qū)間上存在極值,
,解得 (4分)
(2)不等式,即
令
(6分)
令,則,
,即在上單調(diào)遞增, (7分)
,從而,故在上單調(diào)遞增, (7分)
(8分)
(3)由(2)知,當(dāng)時(shí),恒成立,即,
令,則, (9分)
(10分)
以上各式相加得,
即,
即
(12分)
。
(本小題滿分12分)
為了解某班學(xué)生喜愛(ài)打籃球是否與性別有關(guān),對(duì)本班50人進(jìn)行了問(wèn)卷調(diào)查得到了如下的列聯(lián)表:
|
喜愛(ài)打籃球 |
不喜愛(ài)打籃球 |
合計(jì) |
男生 |
|
5 |
|
女生 |
10 |
|
[來(lái)源:學(xué)|科|網(wǎng)] |
合計(jì) |
|
|
50[] |
已知在全部50人中隨機(jī)抽取1人抽到喜愛(ài)打籃球的學(xué)生的概率為
(1)請(qǐng)將上面的列聯(lián)表補(bǔ)充完整
(2)是否有99.5%的把握認(rèn)為喜愛(ài)打籃球與性別有關(guān)?說(shuō)明你的理由;
(3)已知喜愛(ài)打籃球的10位女生中,還喜歡打羽毛球,
還喜歡打乒乓球,還喜歡踢足球,現(xiàn)在從喜歡打羽毛球、喜歡打乒乓球、
喜歡踢足球的8位女生中各選出1名進(jìn)行其他方面的調(diào)查,求和不全被選
中的概率.
下面的臨界值表供參考:
0.15 |
0.10 |
0.05 |
0.025 |
0.010 |
0.005 |
0.001 |
|
2.072 |
2.706 |
3.841 |
5.024 |
6.635 |
7.879 |
10.828 |
(本小題滿分12分)
已知函數(shù)是定義在上的奇函數(shù),當(dāng),(其中是自然對(duì)數(shù)的底,)
(1)求的解析式;
(2)設(shè),求證:當(dāng)時(shí),
(3)是否存在實(shí)數(shù),使得當(dāng)時(shí),的最小值是3?如果存在,求出實(shí)數(shù)的值;如果不存在,請(qǐng)說(shuō)明理由。
(本小題滿分12分)已知二次函數(shù)滿足:,,且該函數(shù)的最小值為2.
⑴ 求此二次函數(shù)的解析式;
⑵ 若函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052200242181254879/SYS201205220026063125888760_ST.files/image004.png">= .(其中). 問(wèn)是否存在這樣的兩個(gè)實(shí)數(shù),使得函數(shù)的值域也為?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com