18.解: (Ⅰ)由已知.設(shè)恰好有2家煤礦必須整改的概率為P1. 查看更多

 

題目列表(包括答案和解析)

(本小題滿分12分)已知函數(shù)

(I)若函數(shù)在區(qū)間上存在極值,求實(shí)數(shù)a的取值范圍;

(II)當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)k的取值范圍.

(Ⅲ)求證:解:(1),其定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052512313679685506/SYS201205251234077812428021_ST.files/image007.png">,則,

當(dāng)時(shí),;當(dāng)時(shí),

在(0,1)上單調(diào)遞增,在上單調(diào)遞減,

即當(dāng)時(shí),函數(shù)取得極大值.                                       (3分)

函數(shù)在區(qū)間上存在極值,

 ,解得                                            (4分)

(2)不等式,即

(6分)

,則,

,即上單調(diào)遞增,                          (7分)

,從而,故上單調(diào)遞增,       (7分)

          (8分)

(3)由(2)知,當(dāng)時(shí),恒成立,即

,則,                               (9分)

                                                                       (10分)

以上各式相加得,

                           

                                        (12分)

。

 

查看答案和解析>>

(本小題滿分12分)

為了解某班學(xué)生喜愛(ài)打籃球是否與性別有關(guān),對(duì)本班50人進(jìn)行了問(wèn)卷調(diào)查得到了如下的列聯(lián)表:

 

喜愛(ài)打籃球

不喜愛(ài)打籃球

合計(jì)

男生

 

5

 

女生

10

 

[來(lái)源:學(xué)|科|網(wǎng)]

合計(jì)

 

 

50[]

已知在全部50人中隨機(jī)抽取1人抽到喜愛(ài)打籃球的學(xué)生的概率為

(1)請(qǐng)將上面的列聯(lián)表補(bǔ)充完整

(2)是否有99.5%的把握認(rèn)為喜愛(ài)打籃球與性別有關(guān)?說(shuō)明你的理由;

(3)已知喜愛(ài)打籃球的10位女生中,還喜歡打羽毛球,

還喜歡打乒乓球,還喜歡踢足球,現(xiàn)在從喜歡打羽毛球、喜歡打乒乓球、

喜歡踢足球的8位女生中各選出1名進(jìn)行其他方面的調(diào)查,求不全被選

中的概率.

下面的臨界值表供參考:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

 

查看答案和解析>>

(本小題滿分12分)

   已知函數(shù)是定義在上的奇函數(shù),當(dāng),(其中是自然對(duì)數(shù)的底,

   (1)求的解析式;

   (2)設(shè),求證:當(dāng)時(shí),

   (3)是否存在實(shí)數(shù),使得當(dāng)時(shí),的最小值是3?如果存在,求出實(shí)數(shù)的值;如果不存在,請(qǐng)說(shuō)明理由。

 

查看答案和解析>>

(本小題滿分12分)已知二次函數(shù)滿足:,,且該函數(shù)的最小值為2.

⑴ 求此二次函數(shù)的解析式;

⑵ 若函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052200242181254879/SYS201205220026063125888760_ST.files/image004.png">= .(其中). 問(wèn)是否存在這樣的兩個(gè)實(shí)數(shù),使得函數(shù)的值域也為?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.

 

查看答案和解析>>

(本小題滿分12分)
已知函數(shù)是定義在上的奇函數(shù),當(dāng),(其中是自然對(duì)數(shù)的底,
(1)求的解析式;
(2)設(shè),求證:當(dāng)時(shí),
(3)是否存在實(shí)數(shù),使得當(dāng)時(shí),的最小值是3?如果存在,求出實(shí)數(shù)的值;如果不存在,請(qǐng)說(shuō)明理由。

查看答案和解析>>


同步練習(xí)冊(cè)答案