14.拋物線上一點P到焦點F的距離為2.則點P的坐標是 . 查看更多

 

題目列表(包括答案和解析)

精英家教網(wǎng)先閱讀短文,再回答短文后面的問題.
平面內(nèi)與一個定點F和一條定直線l的距離相等的點的軌跡叫做拋物線,點F叫做拋物線的焦點,直線l叫做拋物線的準線.
下面根據(jù)拋物線的定義,我們來求拋物線的方程.
如上圖,建立直角坐標系xoy,使x軸經(jīng)過點F且垂直于直線l,垂足為K,并使原點與線段KF的中點重合.設(shè)|KF|=p(p>0),那么焦點F的坐標為(
p
2
,0),準線l的方程為x=-
p
2

設(shè)點M(x,y)是拋物線上任意一點,點M到l的距離為d,由拋物線的定義,拋物線就是滿足|MF|=d的點M的軌跡.
∵|MF|=
(x-
p
2
)
2
+y2
,d=|x+
p
2
|∴
(x-
p
2
)
2
+y2
=|x+
p
2
|
將上式兩邊平方并化簡,得y2=2px(p>0)①
方程①叫做拋物線的標準方程,它表示的拋物線的焦點在x軸的正半軸上,坐標是(
p
2
,0),它的準線方程是x=-
p
2

一條拋物線,由于它在坐標平面內(nèi)的位置不同,方程也不同.所以拋物線的標準方程還有其它的幾種形式:y2=-2px,x2=2py,x2=-2py.這四種拋物線的標準方程,焦點坐標以及準線方程列表如下:
標準方程  交點坐標  準線方程 
 y2=2px(p>0)  (
p
2
,0
 x=-
p
2
 y2=-2px(p>0)  (-
p
2
,0
 x=
p
2
 x2=2py(p>0)  (0,
p
2
 y=-
p
2
 x2=-2py(p>0)  (0,-
p
2
 y=-
p
2
解答下列問題:
(1)①已知拋物線的標準方程是y2=8x,則它的焦點坐標是
 
,準線方程是
 

②已知拋物線的焦點坐標是F(0,-6),則它的標準方程是
 

(2)點M與點F(4,0)的距離比它到直線l:x+5=0的距離小1,求點M的軌跡方程.
(3)直線y=
3
x+b
經(jīng)過拋物線y2=4x的焦點,與拋物線相交于兩點A、B,求線段AB的長.

查看答案和解析>>

先閱讀下面一段材料,再完成后面的問題:
材料:過拋物線y=ax2(a>0)的對稱軸上一點(0,-數(shù)學公式)作對稱軸的垂線l,則拋物線上任意一點P到點F(0,數(shù)學公式)的距離與P到l的距離一定相等,我們將點F與直線l分別稱作這拋物線的焦點和準線,如y=x2的焦點為(0,數(shù)學公式).
問題:若直線y=kx+b交拋物線y=數(shù)學公式x2于A、B、AC、BD垂直于拋物線的準線l,垂直足分別為C、D(如圖).
①求拋物線y=數(shù)學公式x2的焦點F的坐標;
②求證:直線AB過焦點時,CF⊥DF;
③當直線AB過點(-1,0),且以線段AB為直徑的圓與準線l相切時,求這條直線對應的函數(shù)解析式.

查看答案和解析>>

(2003•黃石)先閱讀下面一段材料,再完成后面的問題:
材料:過拋物線y=ax2(a>0)的對稱軸上一點(0,-)作對稱軸的垂線l,則拋物線上任意一點P到點F(0,)的距離與P到l的距離一定相等,我們將點F與直線l分別稱作這拋物線的焦點和準線,如y=x2的焦點為(0,).
問題:若直線y=kx+b交拋物線y=x2于A、B、AC、BD垂直于拋物線的準線l,垂直足分別為C、D(如圖).
①求拋物線y=x2的焦點F的坐標;
②求證:直線AB過焦點時,CF⊥DF;
③當直線AB過點(-1,0),且以線段AB為直徑的圓與準線l相切時,求這條直線對應的函數(shù)解析式.

查看答案和解析>>

(2003•黃石)先閱讀下面一段材料,再完成后面的問題:
材料:過拋物線y=ax2(a>0)的對稱軸上一點(0,-)作對稱軸的垂線l,則拋物線上任意一點P到點F(0,)的距離與P到l的距離一定相等,我們將點F與直線l分別稱作這拋物線的焦點和準線,如y=x2的焦點為(0,).
問題:若直線y=kx+b交拋物線y=x2于A、B、AC、BD垂直于拋物線的準線l,垂直足分別為C、D(如圖).
①求拋物線y=x2的焦點F的坐標;
②求證:直線AB過焦點時,CF⊥DF;
③當直線AB過點(-1,0),且以線段AB為直徑的圓與準線l相切時,求這條直線對應的函數(shù)解析式.

查看答案和解析>>

先閱讀下面一段材料,再完成后面的問題:
材料:過拋物線y=ax2(a>0)的對稱軸上一點(0,-
1
4a
)作對稱軸的垂線l,則拋物線上任意一點P到點F(0,
1
4a
)的距離與P到l的距離一定相等,我們將點F與直線l分別稱作這拋物線的焦點和準線,如y=x2的焦點為(0,
1
4
).
問題:若直線y=kx+b交拋物線y=
1
4
x2于A、B、AC、BD垂直于拋物線的準線l,垂直足分別為C、D(如圖).
①求拋物線y=
1
4
x2的焦點F的坐標;
②求證:直線AB過焦點時,CF⊥DF;
③當直線AB過點(-1,0),且以線段AB為直徑的圓與準線l相切時,求這條直線對應的函數(shù)解析式.
精英家教網(wǎng)

查看答案和解析>>

一、選擇題:本大題共12個小題,每小題5分,共60分.

1-5:CDACB; 6-10:ABCDB; 11-12:CD.

二、填空題:本大題共4個小題,每小題4分,共16分.

13.1;  14.;  15.; 16.①②④.

三、解答題:本大題共6個小題,共74分.解答要寫出文字說明,證明過程或演算步驟.

17.解:(Ⅰ)∵,∴

,∴.?????????????????????????????????????????????????????????? 2分

???????????????????????????????????? 4分

.??????????????????????????????????????????????????????????????????????????????? 6分

(Ⅱ)由(Ⅰ),,則.???????????????????????? 8分

.?????????????????????????????????????????????????????? 10分

,∴,∴.????????????????????????????????????????? 12分

18.解:(Ⅰ)設(shè)“學生甲投籃3次入圍”為事件A;“學生甲投籃4次入圍”為事件B,且事件A、B互斥.      1分

;??????????????????????????????????????????????????????????????????????????????????????????? 3分

.????????????????????????????????????????????????????????????????????????????? 5分

故學生甲最多投籃4次就入圍的概率為.?????????????????????????? 6分

(Ⅱ)依題意,的可能取值為3,4,5.則,??????????????? 7分

,?????????????????????????????????????????????? 8分

.?????????????????????????????????????????????????????????????????????? 9分

的分布列為:

3

4

5

P

??????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????? 10分

.???????????????????????????????????????????????????????????????????????? 12分

19.解:方法一 (Ⅰ)∵DE⊥平面ACD,AF平面ACD,

∴DE⊥AF.又∵AC=AD,F(xiàn)為CD中點,∴AF⊥CD,因CD∩DE=D,

∴AF⊥平面CDE.???????????????????????????????????????????????????????????????????????????????????????????????? 4分

  (Ⅱ)延長DA,EB交于點H,連結(jié)CH,因為AB∥DE,AB=DE,所以A為HD的中點.因為F為CD中點,所以CH∥AF,因為AF⊥平面CDE,所以CH⊥平面CDE,故∠DCE為面ACD和面BCE所成二面角的平面角,而△CDE是等腰直角三角形,則∠DCE=45°,則所求成銳二面角大小為45°.???????????? 8分

(Ⅲ),因DEAB,故點E到平面ABC的距離h等于點D到平面ABC的距離,也即△ABC中AC邊上的高.??????????????????????????????????????????????????? 10分

∴三棱錐體積.???????? 12分

方法二  (Ⅱ)取CE的中點Q,連接FQ,因為F為CD的中點,則FQ∥DE,故DE⊥平面ACD,∴FQ⊥平面ACD,又由(Ⅰ)可知FD,F(xiàn)Q,F(xiàn)A兩兩垂直,以O(shè)為坐標原點,建立如圖坐標系,則F(0,0,0),C(,0,0),A(0,0,),B(0,1,),E(1,2,0).平面ACD的一個法向量為,      5分

設(shè)面BCE的法向量,

.???????????????????????????? 7分

∴面ACD和面BCE所成銳二面角的大小為45°.?????????? 8分

(Ⅲ)由(Ⅱ)知面BCE的一個法向量為.點A到BCE的距離.?????????????????????????????????????????????????????????????????????????????????????? 10分

,,,△BCE的面積.?? 11分

三棱錐A-BCE的體積.??????????????????????????????????????????????????????? 12分

20.解:(Ⅰ)當時,,.?????????????????????????????????????? 1分

,解得;,解得.????????????????????????? 3分

∴函數(shù)的單調(diào)遞增區(qū)間是;單調(diào)遞減區(qū)間是.????????????????????????? 4分

(Ⅱ)由不等式的解集為P,且,可知,對于任意,不等式恒成立,即上恒成立.???????????????????????????????????????????????????????????????????????????????? 6分

,∴.???????????????????????????????????????????????????????????????????? 8分

時,;當時,

∴函數(shù)上單調(diào)遞增;在上單調(diào)遞減.????????????????????????????????????????? 10分

所以函數(shù)處取得極大值,即為在上的最大值.

∴實數(shù)t的取值范圍是.????????????????????????????????????????????????????????????????????????? 12分

21.解:(Ⅰ)由已知 ,∴點G的軌跡是以M,N為焦點的雙曲線的右支.   2分

設(shè)方程為,則,,∴.??????????????????????????????????????? 3分

故軌跡E的方程為.??????????????????????????????????????????????????????????????????? 4分

(Ⅱ)①若存在.據(jù)題意,直線l的斜率存在且不等于0,設(shè)為k(k≠0),則l的方程為,與雙曲線方程聯(lián)立消y得,設(shè),

解得.????????????????????????????????????????????????????????????????????? 5分

知,△HPQ是等腰三角形,設(shè)PQ的中點為,則,即.      6分

,,即

,即,解得,因,故

故存在直線l,使成立,此時l的方程為.???????????????????????? 8分

②∵,∴直線是雙曲線的右準線,由雙曲線定義得:,,∴.???????????????????????????????????????????????????????????????? 9分

方法一:當直線l的斜率存在時,∴

.∵,∴,∴.???????????????????????? 11分

當直線l的斜率不存在時,,,綜上.??????????????????????? 12分

方法二:設(shè)直線的傾斜角為,由于直線與雙曲線右支有兩個交點,

,過Q作,垂足為C,則

,由,得,

.??????????????????????????????????????????????????????????????????????????????????????????????????? 12分

22.(Ⅰ)解:,,∴.??????????????????????? 2分

(Ⅱ)證明:由(Ⅰ)知,

,當且僅當時,

a1=1,故.????????????????????????????????????????????????????????????????????????????????????? 4分

下面采用數(shù)學歸納法證明

當n=1時,a1=1<2,結(jié)論成立.?????????????????????????????????????????????????????????????????????????? 5分

假設(shè)n=k時,結(jié)論成立,即,則n=k+1時,

,而函數(shù)上單調(diào)遞增,由,

,即當n=k+1時結(jié)論也成立.???????????????????????????????????????? 7分

綜上可知:.??????????????????????????????????????????????????????????????????????????????? 8分

(Ⅲ)解:由,有,

,∴.?????????????????????????????? 10分

,

.????????????????????????????? 12分

,,求得

當n=1時,;當n=2時,;當n≥3時,由(Ⅱ)知,有.      14分

 

 

 


同步練習冊答案