12.已知:如圖.以定線段AB為直徑作半圓O.P為半圓上任意一點(diǎn).過點(diǎn)P作半圓O的切線分別交過A.B兩點(diǎn)的切線于D.C.AC.BD相交于N點(diǎn).連結(jié)ON.NP.下列結(jié)論:① 四邊形ANPD是梯形,② ON=NP,③ DP?PC為定植,④ PA為∠NPD的平分線.其中一定成立的是①③④(D)①④ 查看更多

 

題目列表(包括答案和解析)

精英家教網(wǎng)已知:如圖,以定線段AB為直徑作半圓O,P為半圓上任意一點(diǎn)(異于A,B),過點(diǎn)P作半圓O的切線分別交過A,B兩點(diǎn)的切線于D,C,AC、BD相交于N點(diǎn),連接ON、NP.下列結(jié)論:①四邊形ANPD是梯形;②ON=NP;③DP•PC為定值;④PA為∠NPD的平分線.其中一定成立的是( 。
A、①②B、②④C、①③④D、②③④

查看答案和解析>>

精英家教網(wǎng)已知:如圖,以定線段AB為直徑作半圓O,P為半圓上任意一點(diǎn)(異于A、B),過點(diǎn)P作半圓O的切線分別交過A、B兩點(diǎn)的切線于D、C,AC、BD相交于N點(diǎn),連接ON、NP.下列結(jié)論:①四邊形ANPD是梯形;②ON=NP;③PA為∠NPD的平分線.其中一定成立的是(  )
A、①②B、②③C、①③D、①

查看答案和解析>>

已知:如圖,以定線段AB為直徑作半圓O,P為半圓上任意一點(diǎn)(異于A、B),過點(diǎn)P作半圓O的切線分別交過A、B兩點(diǎn)的切線于D、C,連接OC、BP,過點(diǎn)O作OM∥CD分別交BC與BP于點(diǎn)M、N.下列結(jié)論:
①S四邊形ABCD=
1
2
AB•CD;
②AD=AB;
③AD=ON;
④AB為過O、C、D三點(diǎn)的圓的切線.
其中正確的個(gè)數(shù)有( 。

查看答案和解析>>

已知:如圖,以定線段AB為直徑作半圓O,P為半圓上任意一點(diǎn)(異于A、B),過點(diǎn)P作半圓O的切線分別交過A、B兩點(diǎn)的切線于D、C, AC、BD相交于N點(diǎn),連結(jié)ON、NP,下列結(jié)論:①四邊形ANPD是梯形;  ② ON=NP;    ③ DP·PC為定值; ④PA為∠NPD的平分線.其中一定成立的是(       )

A. ①②③      B.②③④     C. ①③④     D. ①④

 

查看答案和解析>>

已知:如圖,以定線段AB為直徑作半圓O,P為半圓上任意一點(diǎn)(異于A、B),過點(diǎn)P作半圓O的切線分別交過A、B兩點(diǎn)的切線于D、C,AC、BD相交于N點(diǎn),連接ON、NP.下列結(jié)論:①四邊形ANPD是梯形;②ON=NP;③PA為∠NPD的平分線.其中一定成立的是( )

A.①②
B.②③
C.①③
D.①

查看答案和解析>>

1-6:CCABAD  7――12:BBDACC

13.7   14.   15.   16.-4    17.

18.x-2

19. 證明:如圖,因?yàn)?AB∥CN

所以   在中  

                  

 ≌       

      是平行四邊形    

20.(1)  (2)500

21.(1)(-1,4),;(2);

(3)直線軸的交點(diǎn)B(4,0),與軸交于點(diǎn)C(0,8),

繞P(-1,0)順時(shí)針旋轉(zhuǎn)90°后的對(duì)應(yīng)點(diǎn)(-1, -5),(7,-1),

設(shè)直線的函數(shù)解析式為,

 

22.略(2)

23.的整數(shù)

(2)   得,當(dāng)x=24時(shí),利潤最大是3880

24.解:(1)BE=AD

證明:∵△ABC與△DCE是等邊三角形

∴∠ACB=∠DCE=60° CA=CB,CE=CD

∴∠BCE=∠ACD  ∴△BCE≌△ACD    

∴ BE=AD(也可用旋轉(zhuǎn)方法證明BE=AD)

(2)設(shè)經(jīng)過x秒重疊部分的面積是,如圖在△CQT中

∵∠TCQ=30° ∠RQP=60°

∴∠QTC=30° ∴∠QTC=∠TCQ  ∴QT=QC=x∴ RT=3-x

∵∠RTS+∠R=90°    ∴∠RST=90°

由已知得×32(3-x)2=

x=1,x=5,因?yàn)?≤x≤3,所以x=1

答:經(jīng)過1秒重疊部分的面積是

(3)C′N?E′M的值不變

證明:∵∠ACB=60°∴∠MCE′+∠NCC′=120°

∵∠CNC′+∠NCC′=120° ∴∠MCE′=∠CNC′

∵∠E′=∠C′   ∴△E′MC∽△C′CN

  ∴C′N?E′M=C′C?E′C=×=

 

 

25.(1)

(2)聯(lián)立得A(-2,-1)C(1,2)

設(shè)P(a,0),則Q(4+a,2)

∴Q(-3,2)或(1,2)

(3)∵△AND~△RON,∴

∵△ONS~△DNO,∴

 

 


同步練習(xí)冊(cè)答案