18. 查看更多

 

題目列表(包括答案和解析)

(本小題滿分12分)二次函數(shù)的圖象經(jīng)過三點.

(1)求函數(shù)的解析式(2)求函數(shù)在區(qū)間上的最大值和最小值

查看答案和解析>>

(本小題滿分12分)已知等比數(shù)列{an}中, 

   (Ⅰ)求數(shù)列{an}的通項公式an

   (Ⅱ)設(shè)數(shù)列{an}的前n項和為Sn,證明:;

   (Ⅲ)設(shè),證明:對任意的正整數(shù)n、m,均有

查看答案和解析>>

(本小題滿分12分)已知函數(shù),其中a為常數(shù).

   (Ⅰ)若當(dāng)恒成立,求a的取值范圍;

   (Ⅱ)求的單調(diào)區(qū)間.

查看答案和解析>>

(本小題滿分12分)

甲、乙兩籃球運動員進(jìn)行定點投籃,每人各投4個球,甲投籃命中的概率為,乙投籃命中的概率為

   (Ⅰ)求甲至多命中2個且乙至少命中2個的概率;

   (Ⅱ)若規(guī)定每投籃一次命中得3分,未命中得-1分,求乙所得分?jǐn)?shù)η的概率分布和數(shù)學(xué)期望.

查看答案和解析>>

(本小題滿分12分)已知是橢圓的兩個焦點,O為坐標(biāo)原點,點在橢圓上,且,圓O是以為直徑的圓,直線與圓O相切,并且與橢圓交于不同的兩點A、B.

   (1)求橢圓的標(biāo)準(zhǔn)方程;w.w.w.k.s.5.u.c.o.m        

   (2)當(dāng)時,求弦長|AB|的取值范圍.

查看答案和解析>>

1-12  BDBDA    BABCABD

13.?2

14.2n1-n-2

15.7

16.90

17.(1)∵.

(2)證明:由已知

,

.

18.(1)由,當(dāng)時,,顯然滿足,

,

∴數(shù)列是公差為4的遞增等差數(shù)列.

(2)設(shè)抽取的是第項,則.

,

,∴

.

故數(shù)列共有39項,抽取的是第20項.

19.。

①+②得

,

20.(1)由條件得: .

(2)假設(shè)存在使成立,則    對一切正整數(shù)恒成立.

, 既.

故存在常數(shù)使得對于時,都有恒成立.

21.(1)第1年投入800萬元,第2年投入800×(1-)萬元……,

n年投入800×(1-n1萬元,

所以總投入an=800+800(1-)+……+800×(1-n1=4000[1-(n

同理:第1年收入400萬元,第2年收入400×(1+)萬元,……,

n年收入400×(1+n1萬元

bn=400+400×(1+)+……+400×(1+n1=1600×[(n-1]

(2)∴bnan>0,1600[(n-1]-4000×[1-(n]>0

化簡得,5×(n+2×(n-7>0

設(shè)x=(n,5x2-7x+2>0

xx>1(舍),即(n,n≥5.

22.(文)

(1)當(dāng)時,

,即 ,

.

  • <menu id="eeyci"><center id="eeyci"></center></menu>
    <tbody id="eeyci"></tbody>
  • <abbr id="eeyci"></abbr>
    • (1)

      (2)

      由(1)得

      當(dāng)

      成立

      故所得數(shù)列不符合題意.

      當(dāng)

      .

      綜上,共有3個滿足條件的無窮等差數(shù)列:

      ①{an} : an=0,即0,0,0,…;

      ②{an} : an=1,即1,1,1,…;

      ③{an} : an=2n-1,即1,3,5,…,

      (理)

      (1)由已知得:,

      ,

      ,

      .

      (2)由,∴,

      ,  ∴是等比數(shù)列.

      ,∴

      ,

       ,當(dāng)時,,

      . ,

      .


      同步練習(xí)冊答案