查看更多

 

題目列表(包括答案和解析)

(本小題滿分14分)

在△OAB的邊OA,OB上分別有一點P,Q,已知:=1:2, :=3:2,連結(jié)AQ,BP,設(shè)它們交于點R,若a,b.

   (1)用a b表示;

   (2)過RRHAB,垂足為H,若| a|=1, | b|=2, a b的夾角的取值范圍.

查看答案和解析>>

(本小題滿分14分)已知A(8,0),B、C兩點分別在y軸和x軸上運(yùn)動,并且滿足

(1)求動點P的軌跡方程。

(2)若過點A的直線L與動點P的軌跡交于M、N兩點,且

其中Q(-1,0),求直線L的方程.

查看答案和解析>>

(本小題滿分14分)

 已知函數(shù),a>0,w.w.w.k.s.5.u.c.o.m          

(Ⅰ)討論的單調(diào)性;

(Ⅱ)設(shè)a=3,求在區(qū)間{1,}上值域。期中e=2.71828…是自然對數(shù)的底數(shù)。

查看答案和解析>>

(本小題滿分14分)

已知數(shù)列{an}和{bn}滿足:a1=λ,an+1=其中λ為實數(shù),n為正整數(shù)。

(Ⅰ)對任意實數(shù)λ,證明數(shù)列{an}不是等比數(shù)列;

(Ⅱ)試判斷數(shù)列{bn}是否為等比數(shù)列,并證明你的結(jié)論;

(Ⅲ)設(shè)0<ab,Sn為數(shù)列{bn}的前n項和。是否存在實數(shù)λ,使得對任意正整數(shù)n,都有

aSnb?若存在,求λ的取值范圍;若不存在,說明理由。

查看答案和解析>>

(本小題滿分14分)

如圖(1),是等腰直角三角形,,分別為、的中點,將沿折起, 使在平面上的射影恰為的中點,得到圖(2).

(Ⅰ)求證:;

(Ⅱ)求三棱錐的體積.

查看答案和解析>>

一、選擇題:

1. D 2. B  3. A  4. D  5. C  6. B  7. D  8. A  9. C  10. B  11. A   12. B

二、填空題:

13. 5;14. 18 ;15. 2 ;16. ③④

三、解答題:

17. 解:(1) 由已知得,即,………………2分

所以數(shù)列{}是以1為首項,公差2的等差數(shù)列.…………………………4分

.………………………………………5分

(2) 由(1)知:,從而.…………………………7分

………………………………9分

……………………12分

18. 解:(1)……2分

……………………4分

………………………6分

(2) ∵

(k∈Z);…………………… 8分

≤x≤(k∈Z);…………………………10分

的單調(diào)遞增區(qū)間為[,] (k∈Z)……………………12分

19. (1)解:把4名獲書法比賽一等獎的同學(xué)編號為1,2,3,4,2名獲繪畫比賽一等獎的同學(xué)編號為5,6.從6名同學(xué)中任選兩名的所有可能結(jié)果如下:(1,2),(1,3),(1,4),(1,5), (1,6),(2,3),(2,4),(2,5), (2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6),共15個.…………………4分

(1) 從6名同學(xué)中任選兩名,都是書法比賽一等獎的所有可能是:(1,2),(1,3),(1,4), (2,3),(2,4),(3,4),共6個.…………………………6分

∴選出的兩名志愿者都是書法比賽一等獎的概率.…………………8分

(2) 從6名同學(xué)中任選兩名,一名是書法比賽一等獎,另一名是繪畫比賽一等獎的所有可能是:(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),共8個.………………………10分

∴選出的兩名志愿者一名是書法比賽一等獎,另一名是繪畫比賽一等獎的概率是.………………………12分

20. 解:(1) 取AB的中點G,連FG,可得FG∥AE,F(xiàn)G=AE,又CD⊥平面ABC,AE⊥平面ABC,∴CD∥AE,CD=AE………………………2分

∴FG∥CD,F(xiàn)G=CD,∵FG⊥平面ABC……………4分

∴四邊形CDFG是矩形,DF∥CG,CG平面ABC,

DF平面ABC∴DF∥平面ABC…………………6分

(2) Rt△ABE中,AE=2a,AB=2a,F(xiàn)為BE中點,∴AF⊥BE

∵△ABC是正三角形,∴CG⊥AB,∴DF⊥AB…………9分

又DF⊥FG,∴DF⊥平面ABE,DF⊥AF,

∴AF⊥平面BDF,∴AF⊥BD.……………………12分

21. 解:(1)與圓相切,則,即,所以,

………………………3分

則由,消去y得:  (*)

由Δ=,∴,………………4分

(2) 設(shè),由(*)得,.…………5分

.…………………………6分

,所以.∴k=±1.

.,∴………………………7分

.…………………8分

(3) 由(2)知:(*)為

由弦長公式得

 … 10分

所以………………………12分

22. (1) 解:設(shè)x∈(0,1],則-x∈[-1,0),∴………………1分

是奇函數(shù).∴=………………………2分

∴當(dāng)x∈(0,1]時, ,…………………3分

………………………………4分

(2) 當(dāng)x∈(0,1]時,∵…………………6分

,x∈(0,1],≥1,

.………………………7分

.……………………………8分

在(0,1]上是單調(diào)遞增函數(shù).…………………9分

(3) 解:當(dāng)時, 在(0,1]上單調(diào)遞增. ,

(不合題意,舍之),………………10分

當(dāng)時,由,得.……………………………11分

如下表:

1

>0

0

<0

 

最大值

   ㄋ

 

由表可知: ,解出.……………………12分

此時∈(0,1)………………………………13分

∴存在,使在(0,1]上有最大值-6.………………………14分

 

 

 

 


同步練習(xí)冊答案