如圖.三棱柱中.面.,..為的中點(diǎn). 查看更多

 

題目列表(包括答案和解析)

( 本小題滿分12分)

如圖,三棱柱ABC—A1B1C1中,底面為正三角形,側(cè)棱與底面垂直,D是BC的中點(diǎn),AA1=AB=1。

(1)   求證:A1C∥平面AB1D;

(2)   求點(diǎn)C到平面AB1D的距離。

 

查看答案和解析>>

(本小題滿分12分)

如圖,四棱柱ABCD—A1B1C1D1的底面邊長(zhǎng)和側(cè)棱長(zhǎng)都等于2,平面A1ACC1⊥平面ABCD,∠ABC=∠A1AC=60°,點(diǎn)O為底面對(duì)角線AC與BD的交點(diǎn).

  (Ⅰ)證明:A1O⊥平面ABCD;

  (Ⅱ)求二面角D—A1A—C的平面角的正切值.

 


查看答案和解析>>

(本小題滿分12分) 如圖,四棱柱的底面是邊長(zhǎng)為的正方形,底面,,點(diǎn)在棱上,點(diǎn)是棱的中點(diǎn)

(1)當(dāng)平面時(shí),求的長(zhǎng);

(2)當(dāng)時(shí),求二面角的余弦值。

查看答案和解析>>

(本小題滿分12分) 如圖,四棱柱的底面是邊長(zhǎng)為的正方形,底面,,點(diǎn)在棱上,點(diǎn)是棱的中點(diǎn)

(1)當(dāng)平面時(shí),求的長(zhǎng);

(2)當(dāng)時(shí),求二面角的余弦值。

查看答案和解析>>

(本小題滿分13分)如圖所示,在四棱錐P-ABCD中,底面ABCD是正方形,側(cè)棱PD^底面ABCD,PD=DC,點(diǎn)E是PC的中點(diǎn),作EF^PB交PB于點(diǎn)F,

 

(1)求證:PA//平面EDB;

(2)求證:PB^平面EFD;

(3)求二面角C-PB-D的大小。

 

查看答案和解析>>

 

一、ACBCD   DDCAB

二、11。       12。12         13。

 14。

 

 15。②③⑤

三、16解:(I)

          。。。。。。。。。。。。。。。。。。。 4分

         。。。。。。。。。。。。。。。。。。。 6分

   (II)

       。。。。。。。。。。。。。。。。。。。 8分

       。。。。。。。。。。。。。。。。。。。. 9分

 。。。。。。。。。。。。。。。。。。。. 12分

       當(dāng)   。。。。。。。。。。。。。。  13分

 

17解(1)連接B1C,交BC1于點(diǎn)O,則O為B1C的中點(diǎn),

        ∵D為AC中點(diǎn)    ∴OD∥B1A。。。。。。。。。。。。。。。。。。。。。 4分

        又B1A平面BDC1,OD平面BDC1

         ∴B1A∥平面BDC1   。。。。。。。。。。。。。。。。。。。。。。。。。。。6分

  (2)∵AA1⊥面ABC,BC⊥AC,AA1∥CC1

       ∴CC1⊥面ABC   則BC⊥平面AC1,CC1⊥AC

      如圖以C為坐標(biāo)原點(diǎn),CA所在直線為X軸,CB所在直線為Y軸,所在直線為軸建立空間直角坐標(biāo)系 則C1(0,0,3) B(0,2,0) D(1,0,0) C(0,0,0) 。。。。。。。。。。。。。。。。。 8分

 ∴設(shè)平面的法向量為  由

,取,  則。。。。。。。。。10分

 又平面BDC的法向量為。。。。。。。。。。。。。。。。。。。 11分

       cos

∴二面角C1―BD―C的余弦值為。。。。。。。。。13分

 

18解:(I)設(shè)周五有語(yǔ)文、數(shù)學(xué)、外語(yǔ)三科作業(yè)分別為事件A1、A2、A3周五沒(méi)有語(yǔ)文、數(shù)學(xué)、外語(yǔ)三科作業(yè)為事件A,則由已知表格得

、。。。。。。。。。。。。2分

。。。。。。。。。。4分

(II)設(shè)一周內(nèi)有數(shù)學(xué)作業(yè)的天數(shù)為,則

      

      

      

      

      

。。。。。。。。。。。。。。。。。。。。。10分

  所以隨機(jī)變量的概率分布列如下:

0

1

2

3

4

5

P

   故 。。。。。。。。。。13分

 

19解:(Ⅰ)由題意,可設(shè)拋物線方程為.

,得.拋物線的焦點(diǎn)為,.

拋物線D的方程為.  。。。。。。。。。。。。。。。。。。。。。。。4分

(Ⅱ)設(shè)A由于O為PQ之中點(diǎn),故當(dāng)軸時(shí)由拋物線的對(duì)稱性知 。。。。。。。。。。。。。。。。。。

當(dāng)不垂直軸時(shí),設(shè):,

,

,,

                …

                                         

(Ⅲ)設(shè)存在直線滿足題意,則圓心,過(guò)M作直線的垂線,

垂足為E, 設(shè)直線與圓交于點(diǎn),可得,

即  =

=

==                   

當(dāng)時(shí),,此時(shí)直線被以AP為直徑的圓截得的弦長(zhǎng)恒為定值.…12分

因此存在直線滿足題意.                                  ……13分

 

 

20解:(Ⅰ) ,

. 。。。。。。。。。。。。。。。。。。2分

當(dāng)時(shí),. 。。。。。。。。。。。。。。。。。。。。。。。。。。3分

當(dāng)時(shí),,此時(shí)函數(shù)遞減; 

當(dāng)時(shí),,此時(shí)函數(shù)遞增;

∴當(dāng)時(shí),取極小值,其極小值為. 。。。。。。。。。。。。。。。。。。6分

(Ⅱ)解法一:由(Ⅰ)可知函數(shù)的圖像在處有公共點(diǎn),因此若存在的隔離直線,則該直線過(guò)這個(gè)公共點(diǎn). 。。。。。。。。。。。。。。。。。。。。。。。7分

設(shè)隔離直線的斜率為,則直線方程為,

即     .。。。。。。。。。。。。。。。。。。。。。。。。。。。。。8分

,可得當(dāng)時(shí)恒成立.

, ,得.。。。。。。。。。。。。。。。。。10分

下面證明當(dāng)時(shí)恒成立.

,則

,  。。。。。。。。。。。。。。。。。。。。。。11分

當(dāng)時(shí),

  當(dāng)時(shí),,此時(shí)函數(shù)遞增;

當(dāng)時(shí),,此時(shí)函數(shù)遞減;

∴  當(dāng)時(shí),取極大值,也是最大值,其最大值為.   

 

從而,即恒成立.。。。。。。。13分             

∴  函數(shù)存在唯一的隔離直線.。。。。。。。。。。。。。。。14分

解法二: 由(Ⅰ)可知當(dāng)時(shí), (當(dāng)且當(dāng)時(shí)取等號(hào)) .。。。。。7分

若存在的隔離直線,則存在實(shí)常數(shù),使得

恒成立,

,則

,即. 。。。。。。。。。。。。。。。。。。。。。。。。8分

后面解題步驟同解法一.

 

21(!)解:PQ=6ec8aac122bd4f6e,

       PQ矩陣表示的變換T:6ec8aac122bd4f6e滿足條件

         6ec8aac122bd4f6e.   所以6ec8aac122bd4f6e。。。。。。。。。。。。。。。。。。(3分)

直線6ec8aac122bd4f6e任取點(diǎn)6ec8aac122bd4f6e,則點(diǎn)6ec8aac122bd4f6e在直線6ec8aac122bd4f6e上,

6ec8aac122bd4f6e,又6ec8aac122bd4f6e,得6ec8aac122bd4f6e   所以6ec8aac122bd4f6e 。。。。。(7分)

(2) (Ⅰ)曲線C的極坐標(biāo)方程是化為直角坐標(biāo)方程為:

    直線的直角坐標(biāo)方程為:。。。。。。。。。3分

(Ⅱ)(法一)由(1)知:圓心的坐標(biāo)為(2,0),圓的半徑R=2,

圓心到直線l的距離

 

    。。。。。。。。。。。。。。。。。。。。。。。7分

 

 

(法二)把是參數(shù))代入方程,

,

.

     

  。。。。。。。。。。。。。。。。。。。。。。。。。7分

 

(3) 解:(Ⅰ)

 

函數(shù)如圖所示。。。。。。。。。。。。。3分

 

(Ⅱ)由題設(shè)知:

如圖,在同一坐標(biāo)系中作出函數(shù)的圖象

(如圖所示) 又解集為.

    由題設(shè)知,當(dāng)時(shí),

得: 。。。。。。。。。。。。。。。。7分

 

 

 


同步練習(xí)冊(cè)答案