所以的內(nèi)切圓的方程為.----16分注:本題亦可先用面積求出半徑.再求圓的方程. 查看更多

 

題目列表(包括答案和解析)

已知點(diǎn)為圓上的動(dòng)點(diǎn),且不在軸上,軸,垂足為,線段中點(diǎn)的軌跡為曲線,過定點(diǎn)任作一條與軸不垂直的直線,它與曲線交于、兩點(diǎn)。

(I)求曲線的方程;

(II)試證明:在軸上存在定點(diǎn),使得總能被軸平分

【解析】第一問中設(shè)為曲線上的任意一點(diǎn),則點(diǎn)在圓上,

,曲線的方程為

第二問中,設(shè)點(diǎn)的坐標(biāo)為,直線的方程為,  ………………3分   

代入曲線的方程,可得 

,∴

確定結(jié)論直線與曲線總有兩個(gè)公共點(diǎn).

然后設(shè)點(diǎn),的坐標(biāo)分別, ,則,  

要使軸平分,只要得到。

(1)設(shè)為曲線上的任意一點(diǎn),則點(diǎn)在圓上,

,曲線的方程為.  ………………2分       

(2)設(shè)點(diǎn)的坐標(biāo)為,直線的方程為,  ………………3分   

代入曲線的方程,可得 ,……5分            

,∴,

∴直線與曲線總有兩個(gè)公共點(diǎn).(也可根據(jù)點(diǎn)M在橢圓的內(nèi)部得到此結(jié)論)

………………6分

設(shè)點(diǎn),的坐標(biāo)分別, ,則,   

要使軸平分,只要,            ………………9分

,,        ………………10分

也就是,,

,即只要  ………………12分  

當(dāng)時(shí),(*)對(duì)任意的s都成立,從而總能被軸平分.

所以在x軸上存在定點(diǎn),使得總能被軸平分

 

查看答案和解析>>

已知中心在原點(diǎn),焦點(diǎn)在軸上的橢圓的離心率為,且經(jīng)過點(diǎn).

(Ⅰ)求橢圓的方程;

(Ⅱ)是否存過點(diǎn)(2,1)的直線與橢圓相交于不同的兩點(diǎn),滿足?若存在,求出直線的方程;若不存在,請(qǐng)說明理由.

【解析】第一問利用設(shè)橢圓的方程為,由題意得

解得

第二問若存在直線滿足條件的方程為,代入橢圓的方程得

因?yàn)橹本與橢圓相交于不同的兩點(diǎn),設(shè)兩點(diǎn)的坐標(biāo)分別為

所以

所以.解得。

解:⑴設(shè)橢圓的方程為,由題意得

解得,故橢圓的方程為.……………………4分

⑵若存在直線滿足條件的方程為,代入橢圓的方程得

因?yàn)橹本與橢圓相交于不同的兩點(diǎn),設(shè)兩點(diǎn)的坐標(biāo)分別為

所以

所以

,

因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912284792138316/SYS201207091229220620471975_ST.files/image009.png">,即,

所以

所以,解得

因?yàn)锳,B為不同的兩點(diǎn),所以k=1/2.

于是存在直線L1滿足條件,其方程為y=1/2x

 

查看答案和解析>>

(本小題滿分16分)

在直角坐標(biāo)系中,直線軸正半軸和軸正半軸分別相交于兩點(diǎn)

的內(nèi)切圓為⊙

    (1)如果⊙的半徑為1,與⊙切于點(diǎn),求直線的方程

(2)如果⊙的半徑為1,證明當(dāng)的面積、周長(zhǎng)最小時(shí),此時(shí)的為同一三角形

(3)如果的方程為為⊙上任一點(diǎn),求的最值

 

查看答案和解析>>

(本小題滿分16分)

在直角坐標(biāo)系xOy中,直線l與x軸正半軸和y軸正半軸分別相交于A,B兩點(diǎn),△AOB的內(nèi)切圓為圓M.

(1)如果圓M的半徑為1,l與圓M切于點(diǎn)C (,1+),求直線l的方程;

(2)如果圓M的半徑為1,證明:當(dāng)△AOB的面積、周長(zhǎng)最小時(shí),此時(shí)△AOB為同一個(gè)三角形;

(3)如果l的方程為x+y-2-=0,P為圓M上任一點(diǎn),求的最值.

 

查看答案和解析>>

(本小題滿分16分)

在直角坐標(biāo)系xOy中,直線l與x軸正半軸和y軸正半軸分別相交于A,B兩點(diǎn),△AOB的內(nèi)切圓為圓M.

(1)如果圓M的半徑為1,l與圓M切于點(diǎn)C (,1+),求直線l的方程;

(2)如果圓M的半徑為1,證明:當(dāng)△AOB的面積、周長(zhǎng)最小時(shí),此時(shí)△AOB為同一個(gè)三角形;

(3)如果l的方程為x+y-2-=0,P為圓M上任一點(diǎn),求的最值.

 

查看答案和解析>>


同步練習(xí)冊(cè)答案