(2)當(dāng)時(shí).若的最小值為4.求實(shí)數(shù)a的值. 查看更多

 

題目列表(包括答案和解析)

若函數(shù)fA(x)的定義域?yàn)?span id="weasemk" class="MathJye">A=[a,b),且fA(x)=(
x
a
+
b
x
-1)2-
2b
a
+1,其中a、b為任意正實(shí)數(shù),且a<b.
(1)當(dāng)A=[4,7)時(shí),研究fA(x)的單調(diào)性(不必證明);
(2)寫出fA(x)的單調(diào)區(qū)間(不必證明),并求函數(shù)fA(x)的最小值、最大值;
(3)若x1∈Ik=[k2,(k+1)2),x2∈Ik+1=[(k+1)2,(k+2)2),其中k是正整數(shù),對(duì)一切正整數(shù)k不等式fIk(x1)+fIk+1(x2)<m都有解,求m的取值范圍.

查看答案和解析>>

若函數(shù)fA(x)的定義域?yàn)?img class='latex' alt='數(shù)學(xué)公式' src='http://thumb.zyjl.cn/pic5/latex/479932.png' />,其中a、b為任意正實(shí)數(shù),且a<b.
(1)當(dāng)A=[4,7)時(shí),研究fA(x)的單調(diào)性(不必證明);
(2)寫出fA(x)的單調(diào)區(qū)間(不必證明),并求函數(shù)fA(x)的最小值、最大值;
(3)若x1∈Ik=[k2,(k+1)2),x2∈Ik+1=[(k+1)2,(k+2)2),其中k是正整數(shù),對(duì)一切正整數(shù)k不等式數(shù)學(xué)公式都有解,求m的取值范圍.

查看答案和解析>>

若函數(shù)fA(x)的定義域?yàn)?span mathtag="math" >A=[a,b),且fA(x)=(
x
a
+
b
x
-1)2-
2b
a
+1,其中a、b為任意正實(shí)數(shù),且a<b.
(1)當(dāng)A=[4,7)時(shí),研究fA(x)的單調(diào)性(不必證明);
(2)寫出fA(x)的單調(diào)區(qū)間(不必證明),并求函數(shù)fA(x)的最小值、最大值;
(3)若x1∈Ik=[k2,(k+1)2),x2∈Ik+1=[(k+1)2,(k+2)2),其中k是正整數(shù),對(duì)一切正整數(shù)k不等式fIk(x1)+fIk+1(x2)<m都有解,求m的取值范圍.

查看答案和解析>>

已知函數(shù)f(x)=ax2+4x-2,若對(duì)任意x1,x2∈R且x1≠x2,都有f(
x1+x2
2
)<
f(x1)+f(x2)
2

(1)求實(shí)數(shù)a的取值范圍;
(2)對(duì)于給定的實(shí)數(shù)a,有一個(gè)最小的負(fù)數(shù)M(a),使得x∈[M(a),0]時(shí),-4≤f(x)≤4都成立,則當(dāng)a為何值時(shí),M(a)最小,并求出M(a)的最小值.

查看答案和解析>>

已知函數(shù)f(x)=ax2+4x-2,若對(duì)任意x1,x2∈R且x1≠x2,都有f(
x1+x2
2
)<
f(x1)+f(x2)
2

(1)求實(shí)數(shù)a的取值范圍;
(2)對(duì)于給定的實(shí)數(shù)a,有一個(gè)最小的負(fù)數(shù)M(a),使得x∈[M(a),0]時(shí),-4≤f(x)≤4都成立,則當(dāng)a為何值時(shí),M(a)最小,并求出M(a)的最小值.

查看答案和解析>>


同步練習(xí)冊(cè)答案