找一個(gè)非零函數(shù).使.則的解析式可以是 . 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)f(x)=
(3a-1)x+5a,x<1
logax,x≥1
(a>0且a≠1),現(xiàn)給出下列命題:
①當(dāng)其圖象是一條連續(xù)不斷的曲線時(shí),則a=
1
8
;
②當(dāng)其圖象是一條連續(xù)不斷的曲線時(shí),能找到一個(gè)非零實(shí)數(shù)a使f(x)在(-∞,+∞)上是增函數(shù);
③當(dāng)a∈(
1
8
,
1
3
)
時(shí),不等式f(1+a)•f(1-a)<0恒成立;
④函數(shù)y=f(|x+1|)是偶函數(shù).
其中正確命題的序號(hào)是
①③
①③
.(填上所有你認(rèn)為正確的命題的序號(hào))

查看答案和解析>>

已知函數(shù),現(xiàn)給出下列命題:

① 當(dāng)圖象是一條連續(xù)不斷的曲線時(shí),則=;

② 當(dāng)圖象是一條連續(xù)不斷的曲線時(shí),能找到一個(gè)非零實(shí)數(shù),使f (x)在R上是增函數(shù);

③ 當(dāng)時(shí),不等式恒成立

④ 函數(shù) 是偶函數(shù)

其中正確的命題是( ▲ )

A.①③          B.②④            C.①④          D.②③

 

查看答案和解析>>

已知函數(shù),現(xiàn)給出下列命題:

① 當(dāng)圖象是一條連續(xù)不斷的曲線時(shí),則=;

② 當(dāng)圖象是一條連續(xù)不斷的曲線時(shí),能找到一個(gè)非零實(shí)數(shù),使上是增函數(shù);

③ 當(dāng)時(shí),不等式恒成立;

④ 函數(shù) 是偶函數(shù).

其中正確的命題是

A.① ④        B.② ④            C.① ③          D.② ③  

 

查看答案和解析>>

已知函數(shù)(a>0且a≠1),現(xiàn)給出下列命題:
①當(dāng)其圖象是一條連續(xù)不斷的曲線時(shí),則a=
②當(dāng)其圖象是一條連續(xù)不斷的曲線時(shí),能找到一個(gè)非零實(shí)數(shù)a使f(x)在(-∞,+∞)上是增函數(shù);
③當(dāng)時(shí),不等式f(1+a)•f(1-a)<0恒成立;
④函數(shù)y=f(|x+1|)是偶函數(shù).
其中正確命題的序號(hào)是    .(填上所有你認(rèn)為正確的命題的序號(hào))

查看答案和解析>>

已知函數(shù)(a>0且a≠1),現(xiàn)給出下列命題:
①當(dāng)其圖象是一條連續(xù)不斷的曲線時(shí),則a=;
②當(dāng)其圖象是一條連續(xù)不斷的曲線時(shí),能找到一個(gè)非零實(shí)數(shù)a使f(x)在(-∞,+∞)上是增函數(shù);
③當(dāng)時(shí),不等式f(1+a)•f(1-a)<0恒成立;
④函數(shù)y=f(|x+1|)是偶函數(shù).
其中正確命題的序號(hào)是    .(填上所有你認(rèn)為正確的命題的序號(hào))

查看答案和解析>>

1-12題  AAAAA  CDDCD  BB

13、等腰梯形;14、;15、充分非必要;16、186

17、

18、解:由+25+|-5|≥,而,等號(hào)當(dāng)且僅當(dāng)時(shí)成立;且,等號(hào)當(dāng)且僅當(dāng)時(shí)成立;所以,,等號(hào)當(dāng)且僅當(dāng)時(shí)成立;故

19、(Ⅰ)表示當(dāng)甲公司不投入宣傳費(fèi)時(shí),乙公司要回避失敗的風(fēng)險(xiǎn)至少要投入11萬(wàn)元的宣傳費(fèi);表示當(dāng)乙公司不投入宣傳費(fèi)時(shí),甲公司要回避失敗的風(fēng)險(xiǎn)至少要投入21萬(wàn)元的宣傳費(fèi).                                         

(Ⅱ)設(shè)甲、乙公司投入的宣傳費(fèi)分別為萬(wàn)元,當(dāng)且僅當(dāng)①,

……②時(shí)雙方均無(wú)失敗的風(fēng)險(xiǎn),           

由①②得易解得,                   

所以,故.                  

20、解:(1) 令g(x)=f(x)-2x=ln(x+m)-2x, 則g(x)=-2                 

∵x≥2-m  ∴x+m≥2 ∴    從而g(x)=-2≤-2<0                                   

∴g(x)在[2-m, +*上單調(diào)遞減     ∴x=2-m時(shí),

g(x)=f(x)-2x最大值=ln(2-m+m)-2(2-m)=ln2+2m-4          

(2) 假設(shè)f(x)=x還有另一解x=(*)  由假設(shè)知

=f()-f()=f(x)?()  x[2-m, +*      

故f(x)=1, 又∵f(x)=<1 矛盾                    

故f(x)=x有唯一解x=                                       

21、

22、解:(1)若,則在定義域內(nèi)存在,

使得,∵方程無(wú)解,

 ,

     當(dāng)時(shí),, 當(dāng)時(shí),由,

        ∴

    ,

又∵函數(shù)圖象與函數(shù)的圖象有交點(diǎn),設(shè)交點(diǎn)的橫坐標(biāo)為,

,其中

,即

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


同步練習(xí)冊(cè)答案