14.各項都是正數(shù)的等比數(shù)列{an}的公比.且成等差數(shù)列.則的值是 查看更多

 

題目列表(包括答案和解析)

各項都是正數(shù)的等比數(shù)列{an}的公比q≠1且a3、a5、a6成等差數(shù)列,則
a3+a5
a4+a6
=( 。
A、
-1+
3
2
B、2+
5
C、
5
+1
2
D、
5
-1
2

查看答案和解析>>

各項都是正數(shù)的等比數(shù)列{an}的公比q≠1且a3、a5、a6成等差數(shù)列,則
a4+a6
a3+a5
=
1+
5
2
1+
5
2

查看答案和解析>>

各項都是正數(shù)的等比數(shù)列{an}的公比q≠1,且a2
1
2
a3a1
成等差數(shù)列,則
a4+a5
a3+a4
的值為( 。
A、
1-
5
2
B、
1+
5
2
C、
5
-1
2
D、
1+
5
2
1-
5
2

查看答案和解析>>

各項都是正數(shù)的等比數(shù)列{an}的公比q≠1,且a3,a5,a6成等差數(shù)列,則
a3+a5a4+a6
=
 

查看答案和解析>>

各項都是正數(shù)的等比數(shù)列{an}的公比q≠1,且a2a3、a1成等差數(shù)列,則的值為(    )

A.                                  B.

C.                                  D.

查看答案和解析>>

一、選擇題:

1―5:ACCCB  6―10:CDACD   11―12:BC  

二、填空題:

13.2  14.   15.5   16.①   ②球的體積函數(shù)的導數(shù)等于球的表面積函數(shù)

三、解答題:

17.(本小題滿分12分)

解:(I)……………………2分

……………………4分

       ……………………………………………………………………5分

   (II)B均為銳角且B<A

    又C為鈍角

    ∴最短邊為b……………………………………………………7分

    由,解得………………………………9分

    又…………………………12分

18.(本小題滿分12分)

       解:(I)

………………………………3分

…………………………………………………4分

   (II)令.

    若時,當時,函數(shù)

    …………………………………………………………6分

    若時,當時,函數(shù)

    …………………………………………………………8分

   (III)由

    確定單調遞增的正值區(qū)間是;

    由

    確定單調遞減的正值區(qū)間是;………10分

    綜上,當時,函數(shù)的單調遞增區(qū)間為.

    當時,函數(shù)的單調遞增區(qū)間為.……12分

       注:①

     的這些

等價形式中,以最好用. 因為復合函數(shù)

的中間變量是增函數(shù),對求的單調區(qū)間來說,

只看外層函數(shù)的單調性即可.否則,利用的其它形

式,例如求單調區(qū)間是非常容易出錯的. 同學們可以嘗試做一

的其它形式,認真體會,比較優(yōu)劣!

       ②今后遇到求類似的單調區(qū)間問題,應首先通過誘導公式將轉化為標準形

式:(其中A>0,ω>0),然后再行求

解,保險系數(shù)就大了.

19.(本小題滿分12分)

       解:(I)由已知……………………1分

    …………3分

由已知

∴公差d=1…………………………………………………………4分

……………………………………………………6分

   (II)設…………………………7分

    當時,k的增函數(shù),也是k的增函數(shù).

    ………………………………10分

    又

    *不存在,使…………………………………12分

20.(本小題滿分12分)

解:恒成立

只需小于的最小值…………………………………………2分

而當時,≥3……………………………………………4分

……………………………………………………6分

存在極大值與極小值

有兩個不等的實根…………………………8分

…………………………………………………………10分

要使“PQ”為真,只需

故m的取值范圍為[2,6].…………………………………………………12分

21.(本小題滿分12分)

解:設此工廠應分別生產甲、乙兩種產品x噸、y噸,獲得利潤z萬元………1分

       依題意可得約束條件:

    <rt id="dtdfl"><delect id="dtdfl"></delect></rt>
        <label id="dtdfl"><legend id="dtdfl"></legend></label>

            <label id="dtdfl"><xmp id="dtdfl"><label id="dtdfl"></label>

             

                   利潤目標函數(shù)…………(7分)                            

            如圖,作出可行域,作直線,把直線l向右上方平移至l1位置,直線經過可行域上的點M,且與原點距離最大,此時取最大值.…………10分

                   解方程組,得M(20,24)

            故生產甲種產品20t,乙種產品24 t,才能使此工廠獲得最大利潤.…………12分

            22.(本小題滿分14分)

            解:(Ⅰ)依題意

                  =5n-4    ……………………3分

            (Ⅱ)(1)由

            即 

                ……………………6分

            即      

            是以為首項,為公差的等差數(shù)列  ………………8分

            (2)由(1)得

                ………………10分

                   ①

            ∴2  ②

            ①-②得  

                           =

              ………………14分


            同步練習冊答案